RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2011, Volume 18, Number 4, Pages 17–48 (Mi da658)  

This article is cited in 9 scientific papers (total in 9 papers)

Polynomial algorithm with approximation ratio $7/9$ for maximum 2-PSP

A. N. Glebovab, D. Zh. Zambalayevaa

a S. L. Sobolev Institute of Mathematics, SB RAS, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We study a 2-peripatetic salesman problem on maximum which consists in finding two edge-disjoint Hamiltonian cycles of maximum total weight in a complete undirected graph. We present a cubic time approximation algorithm for this problem with guaranteed ratio $7/9$, the best known for today. Ill. 5, bibliogr. 14.

Keywords: traveling salesman problem, 2-peripatetic salesman problem, polynomial algorithm, guaranteed approximation ratio.

Full text: PDF file (538 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2012, 6:1, 69–89

Bibliographic databases:

UDC: 519.8
Received: 25.01.2011
Revised: 06.05.2011

Citation: A. N. Glebov, D. Zh. Zambalayeva, “Polynomial algorithm with approximation ratio $7/9$ for maximum 2-PSP”, Diskretn. Anal. Issled. Oper., 18:4 (2011), 17–48; J. Appl. Industr. Math., 6:1 (2012), 69–89

Citation in format AMSBIB
\Bibitem{GleZam11}
\by A.~N.~Glebov, D.~Zh.~Zambalayeva
\paper Polynomial algorithm with approximation ratio $7/9$ for maximum 2-PSP
\jour Diskretn. Anal. Issled. Oper.
\yr 2011
\vol 18
\issue 4
\pages 17--48
\mathnet{http://mi.mathnet.ru/da658}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2894339}
\zmath{https://zbmath.org/?q=an:1249.90300}
\transl
\jour J. Appl. Industr. Math.
\yr 2012
\vol 6
\issue 1
\pages 69--89
\crossref{https://doi.org/10.1134/S1990478912010085}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857682297}


Linking options:
  • http://mi.mathnet.ru/eng/da658
  • http://mi.mathnet.ru/eng/da/v18/i4/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. Kh. Gimadi, E. V. Ivonina, “Approximation algorithms for maximum-weight problem of two-peripatetic salesmen”, J. Appl. Industr. Math., 6:3 (2012), 295–305  mathnet  crossref  mathscinet
    2. E. Kh. Gimadi, A. M. Istomin, I. A. Rykov, “On $m$-capacitated peripatetic salesman problem”, J. Appl. Industr. Math., 8:1 (2014), 40–52  mathnet  crossref  mathscinet
    3. O. Yu. Tsidulko, “On solvability of the axial $8$-index assignment problem on one-cycle permutations”, J. Appl. Industr. Math., 8:1 (2014), 115–126  mathnet  crossref  mathscinet  isi
    4. E. Kh. Gimadi, Yu. V. Glazkov, O. Yu. Tsidulko, “The probabilistic analysis of an algorithm for solving the $m$-planar $3$-dimensional assignment problem on one-cycle permutations”, J. Appl. Industr. Math., 8:2 (2014), 208–217  mathnet  crossref  mathscinet  isi
    5. A. N. Glebov, D. Zh. Zambalaeva, A. A. Skretneva, “$2/3$-approximation algorithm for the maximization version of the asymmetric two peripatetic salesman problem”, J. Appl. Industr. Math., 9:1 (2015), 61–67  mathnet  crossref  mathscinet
    6. E. Kh. Gimadi, A. M. Istomin, I. A. Rykov, “Zadacha o dvukh kommivoyazherakh s ogranicheniyami na propusknye sposobnosti reber grafa s razlichnymi vesovymi funktsiyami”, Vestn. NGU. Ser. matem., mekh., inform., 14:3 (2014), 3–18  mathnet
    7. Gimadi E.Kh. Glebov A.N. Skretneva A.A. Tsidulko O.Yu. Zambalaeva D.Zh., “Combinatorial Algorithms With Performance Guarantees For Finding Several Hamiltonian Circuits in a Complete Directed Weighted Graph”, Discrete Appl. Math., 196:SI (2015), 54–61  crossref  mathscinet  zmath  isi  elib  scopus
    8. E. Kh. Gimadi, O. Yu. Tsidulko, “An asymptotically optimal algorithm for the $m$-peripatetic salesman problem on random inputs with discrete distribution”, J. Appl. Industr. Math., 11:3 (2017), 354–361  mathnet  crossref  crossref  elib
    9. Gimadi E.Kh. Tsidulko O.Yu., “Approximation Algorithms For the Maximum M-Peripatetic Salesman Problem”, Analysis of Images, Social Networks and Texts, Aist 2017, Lecture Notes in Computer Science, 10716, ed. VanDerAalst W. Ignatov D. Khachay M. Kuznetsov S. Lempitsky V. Lomazova I. Loukachevitch N. Napoli A. Panchenko A. Pardalos P. Savchenko A. Wasserman S., Springer International Publishing Ag, 2018, 304–312  crossref  mathscinet  isi  scopus
  • Дискретный анализ и исследование операций
    Number of views:
    This page:384
    Full text:71
    References:34
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020