RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2012, Volume 19, Number 1, Pages 17–32 (Mi da674)  

This article is cited in 7 scientific papers (total in 7 papers)

Approximation algorithms for maximum-weight problem of two-peripatetic salesmen

E. Kh. Gimadiab, E. V. Ivoninaa

a S. L. Sobolev Institute of Mathematics, SB RAS, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We consider the problem of finding two edge-disjoint Hamiltonian circuits (salesman routes) on maximum total weight in a complete undirected graph. In the case of edge weights in the interval $[1,q]$ a polynomial algorithm with performance ratio $\frac{3q+2}{4q+1}$ is constructed. In the case of different weight functions valued 1 and 2 a polynomial algorithm with performance ratio $\frac{11\rho-8}{18\rho-15}$ is presented, where $\rho$ is a guaranteed ratio of an algorithm for solving similar problem on minimum. Ill. 1, bibliogr. 13.

Keywords: traveling salesman problem, 2-peripatetic salesman problem, polynomial algorithm, guaranteed approximation ratio.

Full text: PDF file (286 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2012, 6:3, 295–305

Bibliographic databases:

UDC: 519.8
Received: 31.05.2011
Revised: 01.07.2011

Citation: E. Kh. Gimadi, E. V. Ivonina, “Approximation algorithms for maximum-weight problem of two-peripatetic salesmen”, Diskretn. Anal. Issled. Oper., 19:1 (2012), 17–32; J. Appl. Industr. Math., 6:3 (2012), 295–305

Citation in format AMSBIB
\Bibitem{GimIvo12}
\by E.~Kh.~Gimadi, E.~V.~Ivonina
\paper Approximation algorithms for maximum-weight problem of two-peripatetic salesmen
\jour Diskretn. Anal. Issled. Oper.
\yr 2012
\vol 19
\issue 1
\pages 17--32
\mathnet{http://mi.mathnet.ru/da674}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2961449}
\transl
\jour J. Appl. Industr. Math.
\yr 2012
\vol 6
\issue 3
\pages 295--305
\crossref{https://doi.org/10.1134/S1990478912030040}


Linking options:
  • http://mi.mathnet.ru/eng/da674
  • http://mi.mathnet.ru/eng/da/v19/i1/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. Kh. Gimadi, A. M. Istomin, I. A. Rykov, “On $m$-capacitated peripatetic salesman problem”, J. Appl. Industr. Math., 8:1 (2014), 40–52  mathnet  crossref  mathscinet
    2. O. Yu. Tsidulko, “On solvability of the axial $8$-index assignment problem on one-cycle permutations”, J. Appl. Industr. Math., 8:1 (2014), 115–126  mathnet  crossref  mathscinet  isi
    3. E. Kh. Gimadi, Yu. V. Glazkov, O. Yu. Tsidulko, “The probabilistic analysis of an algorithm for solving the $m$-planar $3$-dimensional assignment problem on one-cycle permutations”, J. Appl. Industr. Math., 8:2 (2014), 208–217  mathnet  crossref  mathscinet  isi
    4. E. Kh. Gimadi, A. M. Istomin, I. A. Rykov, “Zadacha o dvukh kommivoyazherakh s ogranicheniyami na propusknye sposobnosti reber grafa s razlichnymi vesovymi funktsiyami”, Vestn. NGU. Ser. matem., mekh., inform., 14:3 (2014), 3–18  mathnet
    5. E. Kh. Gimadi, O. Yu. Tsidulko, “An asymptotically optimal algorithm for the $m$-peripatetic salesman problem on random inputs with discrete distribution”, J. Appl. Industr. Math., 11:3 (2017), 354–361  mathnet  crossref  crossref  elib
    6. Gimadi E.Kh. Tsidulko O.Yu., “Approximation Algorithms For the Maximum M-Peripatetic Salesman Problem”, Analysis of Images, Social Networks and Texts, Aist 2017, Lecture Notes in Computer Science, 10716, ed. VanDerAalst W. Ignatov D. Khachay M. Kuznetsov S. Lempitsky V. Lomazova I. Loukachevitch N. Napoli A. Panchenko A. Pardalos P. Savchenko A. Wasserman S., Springer International Publishing Ag, 2018, 304–312  crossref  mathscinet  isi  scopus
    7. A. N. Glebov, S. G. Toktokhoeva, “A polynomial $3/5$-approximate algorithm for the asymmetric maximization version of $3$-PSP”, J. Appl. Industr. Math., 13:2 (2019), 219–238  mathnet  crossref  crossref
  • Дискретный анализ и исследование операций
    Number of views:
    This page:526
    Full text:118
    References:26
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020