RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2012, Volume 19, Number 6, Pages 49–55 (Mi da711)  

This article is cited in 1 scientific paper (total in 1 paper)

The Shannon function of computation of the Arnold complexity of length $2^n$ binary words

Yu. V. Merekin

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: A method for the fast computation of the Arnold complexity of length $2^n$ binary words has been recently proposed by the author. Based on this method, an exact value of the Shannon function is obtained for almost all $n$. Bibliogr. 5.

Keywords: binary word, word complexity, Arnold complexity, Shannon function.

Full text: PDF file (241 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2013, 7:2, 229–233

Bibliographic databases:

UDC: 519.714
Received: 27.03.2012
Revised: 23.08.2012

Citation: Yu. V. Merekin, “The Shannon function of computation of the Arnold complexity of length $2^n$ binary words”, Diskretn. Anal. Issled. Oper., 19:6 (2012), 49–55; J. Appl. Industr. Math., 7:2 (2013), 229–233

Citation in format AMSBIB
\Bibitem{Mer12}
\by Yu.~V.~Merekin
\paper The Shannon function of computation of the Arnold complexity of length $2^n$ binary words
\jour Diskretn. Anal. Issled. Oper.
\yr 2012
\vol 19
\issue 6
\pages 49--55
\mathnet{http://mi.mathnet.ru/da711}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3076913}
\transl
\jour J. Appl. Industr. Math.
\yr 2013
\vol 7
\issue 2
\pages 229--233
\crossref{https://doi.org/10.1134/S1990478913020129}


Linking options:
  • http://mi.mathnet.ru/eng/da711
  • http://mi.mathnet.ru/eng/da/v19/i6/p49

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. V. Merekin, “The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary $n$”, J. Appl. Industr. Math., 9:1 (2015), 98–109  mathnet  crossref  mathscinet
  • Дискретный анализ и исследование операций
    Number of views:
    This page:247
    Full text:73
    References:29
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020