RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2014, Volume 21, Number 3, Pages 76–81 (Mi da777)  

On edge muticoloring of unicyclic graphs

A. V. Pyatkinab

a S. L. Sobolev Institute of Mathematics, SB RAS, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia

Abstract: A muticoloring of an edge weighted graph is an assignment of intervals to its edges such that the intervals of adjacent edges do not intersect in the inner points and the length of each interval is equal to the weight of the edge. The minimum length of the union of all intervals is the edge multichromatic number of the graph. The maximum weighted degree of the vertices (the sum of the weights of the edges incident to it) is its evident lower bound. The examples are known when the multichromatic number is 1.5 times as big as the lower bound. There is a conjecture that this ratio cannot excede 1.5. In the paper, this conjecture is proved for the class of unicyclic graphs. Bibliogr. 4.

Keywords: edge coloring, muticoloring, weighted graphs, intervals, open shop problem.

Full text: PDF file (241 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2014, 8:3, 362–365

Bibliographic databases:

UDC: 519.2+621.391
Received: 13.06.2013
Revised: 24.07.2013

Citation: A. V. Pyatkin, “On edge muticoloring of unicyclic graphs”, Diskretn. Anal. Issled. Oper., 21:3 (2014), 76–81; J. Appl. Industr. Math., 8:3 (2014), 362–365

Citation in format AMSBIB
\Bibitem{Pya14}
\by A.~V.~Pyatkin
\paper On edge muticoloring of unicyclic graphs
\jour Diskretn. Anal. Issled. Oper.
\yr 2014
\vol 21
\issue 3
\pages 76--81
\mathnet{http://mi.mathnet.ru/da777}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3242583}
\transl
\jour J. Appl. Industr. Math.
\yr 2014
\vol 8
\issue 3
\pages 362--365
\crossref{https://doi.org/10.1134/S1990478914030089}


Linking options:
  • http://mi.mathnet.ru/eng/da777
  • http://mi.mathnet.ru/eng/da/v21/i3/p76

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретный анализ и исследование операций
    Number of views:
    This page:215
    Full text:50
    References:43
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020