RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2014, Volume 21, Number 3, Pages 82–86 (Mi da778)  

This article is cited in 1 scientific paper (total in 1 paper)

Polytopes and connected subgraphs

A. V. Seliverstov

Institute for Information Transmission Problems (Kharkevich Institute), RAS, 19 Bolshoy Karetny Lane, 127994 Moscow, Russia

Abstract: The edges of the linear relaxation polytopes for quadratic Boolean programming problems are described. We found correspondence between the edges of such a polytope and connected subgraphs of the complete graph. Tab. 1, bibliogr. 14.

Keywords: combinatorial optimization, polyhedral cone, polytope, subgraph.

Full text: PDF file (227 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 519.852.2
Received: 22.08.2013
Revised: 17.02.2014

Citation: A. V. Seliverstov, “Polytopes and connected subgraphs”, Diskretn. Anal. Issled. Oper., 21:3 (2014), 82–86

Citation in format AMSBIB
\Bibitem{Sel14}
\by A.~V.~Seliverstov
\paper Polytopes and connected subgraphs
\jour Diskretn. Anal. Issled. Oper.
\yr 2014
\vol 21
\issue 3
\pages 82--86
\mathnet{http://mi.mathnet.ru/da778}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3242584}


Linking options:
  • http://mi.mathnet.ru/eng/da778
  • http://mi.mathnet.ru/eng/da/v21/i3/p82

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. Yu. Simanchev, I. V. Urazova, “On the faces of the graph approximation problem polytope”, J. Appl. Industr. Math., 9:2 (2015), 283–291  mathnet  crossref  crossref  mathscinet  elib
  • Дискретный анализ и исследование операций
    Number of views:
    This page:126
    Full text:20
    References:19
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018