RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2015, Volume 22, Number 3, Pages 18–35 (Mi da817)  

This article is cited in 5 scientific papers (total in 5 papers)

Comparison of three approaches to studing stability of solutions to discrete optimization and computational geometry problems

E. N. Gordeev

Bauman Moscow State Technical University, 5 2nd Bauman St., 105005 Moscow, Russia

Abstract: In the 1970–1980s an approach to the analysis of the stability of solutions was proposed and studied. The approach is universal, but originally was used in discrete optimization problems. Later similar results, albeit in different terms, were published for various classes of problems. We show that both the statements of problems and the interpretation of results are close. Bibliogr. 25.

Keywords: stability of the solution, stability radius, Boolean polynomial, matroid, geometric configuration.

DOI: https://doi.org/10.17377/daio.2015.22.461

Full text: PDF file (310 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2015, 9:3, 358–366

Bibliographic databases:

UDC: 519.854
Received: 10.09.2014
Revised: 09.02.2015

Citation: E. N. Gordeev, “Comparison of three approaches to studing stability of solutions to discrete optimization and computational geometry problems”, Diskretn. Anal. Issled. Oper., 22:3 (2015), 18–35; J. Appl. Industr. Math., 9:3 (2015), 358–366

Citation in format AMSBIB
\Bibitem{Gor15}
\by E.~N.~Gordeev
\paper Comparison of three approaches to studing stability of solutions to discrete optimization and computational geometry problems
\jour Diskretn. Anal. Issled. Oper.
\yr 2015
\vol 22
\issue 3
\pages 18--35
\mathnet{http://mi.mathnet.ru/da817}
\crossref{https://doi.org/10.17377/daio.2015.22.461}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3443296}
\elib{http://elibrary.ru/item.asp?id=23859890}
\transl
\jour J. Appl. Industr. Math.
\yr 2015
\vol 9
\issue 3
\pages 358--366
\crossref{https://doi.org/10.1134/S1990478915030072}


Linking options:
  • http://mi.mathnet.ru/eng/da817
  • http://mi.mathnet.ru/eng/da/v22/i3/p18

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Emelichev, S. E. Bukhtoyarov, “O radiuse odnogo tipa ustoichivosti mnogokriterialnoi investitsionnoi zadachi minimizatsii riskov”, Tr. In-ta matem., 25:1 (2017), 3–14  mathnet
    2. V. V. Myasnikov, “Opisanie izobrazhenii s ispolzovaniem konfiguratsionnogo otnosheniya ekvivalentnosti”, Kompyuternaya optika, 42:6 (2018), 998–1007  mathnet  crossref
    3. S. E. Bukhtoyarov, V. A. Emelichev, “Stability aspects of multicriteria integer linear programming problems”, J. Appl. Industr. Math., 13:1 (2019), 22–29  mathnet  crossref  crossref
    4. K. G. Kuzmin, V. R. Haritonova, “Estimating the stability radius of an optimal solution to the simple assembly line balancing problem”, J. Appl. Industr. Math., 13:2 (2019), 250–260  mathnet  crossref  crossref
    5. V. A. Emelichev, S. E. Bukhtoyarov, “Investitsionnaya buleva zadachas kriteriyami riskov Sevidzha v usloviyakh neopredelennosti”, Diskret. matem., 31:2 (2019), 20–33  mathnet  crossref  elib
  • Дискретный анализ и исследование операций
    Number of views:
    This page:219
    Full text:85
    References:36
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020