RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2015, Volume 22, Number 5, Pages 71–85 (Mi da829)  

This article is cited in 2 scientific papers (total in 2 papers)

Sufficient conditions for the minimal $\pi$-schemes for linear Boolean functions to be locally non-repeating

K. L. Rychkov

Sobolev Institute of Mathematics, 4 Koptyug Ave., 630090 Novosibirsk, Russia

Abstract: We formulate sufficient conditions for the minimal $\pi$-schemes for linear Boolean functions to be locally non-repeating. The validity of these conditions gives a description of the classes of all minimal $\pi$-schemes for linear Boolean functions which depend essentially on n variables. Ill. 2, bibliogr. 12.

Keywords: formula size, $\pi$-scheme, lower bound on the complexity.

DOI: https://doi.org/10.17377/daio.2015.22.481

Full text: PDF file (293 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2015, 9:4, 580–587

Bibliographic databases:

UDC: 519.714
Received: 16.03.2015
Revised: 23.07.2015

Citation: K. L. Rychkov, “Sufficient conditions for the minimal $\pi$-schemes for linear Boolean functions to be locally non-repeating”, Diskretn. Anal. Issled. Oper., 22:5 (2015), 71–85; J. Appl. Industr. Math., 9:4 (2015), 580–587

Citation in format AMSBIB
\Bibitem{Ryc15}
\by K.~L.~Rychkov
\paper Sufficient conditions for the minimal $\pi$-schemes for linear Boolean functions to be locally non-repeating
\jour Diskretn. Anal. Issled. Oper.
\yr 2015
\vol 22
\issue 5
\pages 71--85
\mathnet{http://mi.mathnet.ru/da829}
\crossref{https://doi.org/10.17377/daio.2015.22.481}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3467240}
\elib{http://elibrary.ru/item.asp?id=24323030}
\transl
\jour J. Appl. Industr. Math.
\yr 2015
\vol 9
\issue 4
\pages 580--587
\crossref{https://doi.org/10.1134/S1990478915040146}


Linking options:
  • http://mi.mathnet.ru/eng/da829
  • http://mi.mathnet.ru/eng/da/v22/i5/p71

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. L. Rychkov, “Complexity of the realization of a linear Boolean function in the class of $\pi$-schemes”, J. Appl. Industr. Math., 12:3 (2018), 540–576  mathnet  crossref  crossref  elib
    2. K. L. Rychkov, “O sovershennosti minimalnykh pravilnykh razbienii mnozhestva reber $n$-mernogo kuba”, Diskretn. analiz i issled. oper., 26:4 (2019), 74–107  mathnet  crossref
  • Дискретный анализ и исследование операций
    Number of views:
    This page:100
    Full text:48
    References:17
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020