|
This article is cited in 4 scientific papers (total in 4 papers)
On locally balanced Gray codes
I. S. Bykov Sobolev Institute of Mathematics, 4 Koptyug Ave., 630090 Novosibirsk, Russia
Abstract:
We consider locally balanced Gray codes. We say that a Gray code is locally balanced if each “short” subword of transition sequence contains all letters of the set $\{1,2,…,n\}$. The minimal length of such subwords is called the window width of the code. We show that for each $n\ge3$ there exists a Gray code with window width not greater than $n+3\lfloor\log n\rfloor$. Tab. 3, bibliogr. 10.
Keywords:
Gray code, Hamilton cycle, $n$-cube, window width code.
DOI:
https://doi.org/10.17377/daio.2016.23.497
Full text:
PDF file (287 kB)
References:
PDF file
HTML file
English version:
Journal of Applied and Industrial Mathematics, 2016, 10:1, 78–85
Bibliographic databases:
UDC:
519.95 Received: 09.06.2015 Revised: 17.08.2015
Citation:
I. S. Bykov, “On locally balanced Gray codes”, Diskretn. Anal. Issled. Oper., 23:1 (2016), 51–64; J. Appl. Industr. Math., 10:1 (2016), 78–85
Citation in format AMSBIB
\Bibitem{Byk16}
\by I.~S.~Bykov
\paper On locally balanced Gray codes
\jour Diskretn. Anal. Issled. Oper.
\yr 2016
\vol 23
\issue 1
\pages 51--64
\mathnet{http://mi.mathnet.ru/da838}
\crossref{https://doi.org/10.17377/daio.2016.23.497}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3555675}
\elib{https://elibrary.ru/item.asp?id=25792212}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 1
\pages 78--85
\crossref{https://doi.org/10.1134/S1990478916010099}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961564563}
Linking options:
http://mi.mathnet.ru/eng/da838 http://mi.mathnet.ru/eng/da/v23/i1/p51
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
I. S. Bykov, A. L. Perezhogin, “On distance Gray codes”, J. Appl. Industr. Math., 11:2 (2017), 185–192
-
S. Contassot-Vivier, J.-F. Couchot, Ch. Guyeux, P.-C. Heam, “Random walk in a N-cube without Hamiltonian cycle to chaotic pseudorandom number generation: theoretical and practical considerations”, Int. J. Bifurcation Chaos, 27:1 (2017), 1750014
-
S. Contassot-Vivier, J.-F. Couchot, P.-C. Heam, “Gray codes generation algorithm and theoretical evaluation of random walks in N-cubes”, Mathematics, 6:6 (2018), 98
-
I. S. Bykov, “$2$-Factors without close edges in the $n$-dimensional cube”, J. Appl. Industr. Math., 13:3 (2019), 405–417
|
Number of views: |
This page: | 244 | Full text: | 66 | References: | 60 | First page: | 43 |
|