|
Polytopes of special classes of balanced games with transferable utility
A. B. Zinchenko Southern Federal University, 8a Milchakov Ave., 344090 Rostov-on Don, Russia
Abstract:
The polytopes of $(0,1)$-normalized convex and $1$-convex (dual simplex) $n$-person TU-games, as well as monotonic big boss games are considered. The problems of characterization of extreme points of polytopes of $1$-convex games, symmetric convex games and big boss games, symmetric w.r.t. coalition of powerless agents, are solved. For other polytopes, the description of subsets of extreme points is given. Tab. 2, bibliogr. 15.
Keywords:
TU-game, balancedness, $1$-convexity, convexity, big boss game.
DOI:
https://doi.org/10.17377/daio.2016.23.487
Full text:
PDF file (297 kB)
References:
PDF file
HTML file
English version:
Journal of Applied and Industrial Mathematics, 2016, 10:1, 145–154
Bibliographic databases:
Document Type:
Article
UDC:
519.865 Received: 22.04.2015 Revised: 16.10.2015
Citation:
A. B. Zinchenko, “Polytopes of special classes of balanced games with transferable utility”, Diskretn. Anal. Issled. Oper., 23:1 (2016), 97–112; J. Appl. Industr. Math., 10:1 (2016), 145–154
Citation in format AMSBIB
\Bibitem{Zin16}
\by A.~B.~Zinchenko
\paper Polytopes of special classes of balanced games with transferable utility
\jour Diskretn. Anal. Issled. Oper.
\yr 2016
\vol 23
\issue 1
\pages 97--112
\mathnet{http://mi.mathnet.ru/da841}
\crossref{https://doi.org/10.17377/daio.2016.23.487}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3555678}
\elib{http://elibrary.ru/item.asp?id=25792215}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 1
\pages 145--154
\crossref{https://doi.org/10.1134/S1990478916010166}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961675660}
Linking options:
http://mi.mathnet.ru/eng/da841 http://mi.mathnet.ru/eng/da/v23/i1/p97
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 73 | Full text: | 9 | References: | 39 | First page: | 40 |
|