RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2016, Volume 23, Number 2, Pages 100–123 (Mi da847)  

This article is cited in 2 scientific papers (total in 2 papers)

Comparative study of two fast algorithms for projecting a point to the standard simplex

G. Sh. Tamasyan, E. V. Prosolupov, T. A. Angelov

St. Petersburg State University, 35 University Ave., 198504 Peterhof, Russia

Abstract: We consider two algorithms for orthogonal projection of a point to the standard simplex. Although these algorithms are fundamentally different, the following fact unites them. When one of them has the maximum run time, the run time of the other is minimal. Some particular domains are presented whose points are projected by the considered algorithms in the minimum and maximum number of iterations. The correctness of the conclusions is confirmed by the numerical experiments independently implemented in the MatLab environment and the Java programming language. Ill. 11, bibliogr. 23.

Keywords: quadratic programming, projecting a point to a simplex, optimality conditions.

Funding Agency Grant Number
Saint Petersburg State University 9.38.205.2014
Russian Foundation for Basic Research 14-01-31521_мол_а


DOI: https://doi.org/10.17377/daio.2016.23.510

Full text: PDF file (482 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2016, 10:2, 288–301

Bibliographic databases:

UDC: 519.85
Received: 11.09.2015
Revised: 19.10.2015

Citation: G. Sh. Tamasyan, E. V. Prosolupov, T. A. Angelov, “Comparative study of two fast algorithms for projecting a point to the standard simplex”, Diskretn. Anal. Issled. Oper., 23:2 (2016), 100–123; J. Appl. Industr. Math., 10:2 (2016), 288–301

Citation in format AMSBIB
\Bibitem{TamProAng16}
\by G.~Sh.~Tamasyan, E.~V.~Prosolupov, T.~A.~Angelov
\paper Comparative study of two fast algorithms for projecting a~point to the standard simplex
\jour Diskretn. Anal. Issled. Oper.
\yr 2016
\vol 23
\issue 2
\pages 100--123
\mathnet{http://mi.mathnet.ru/da847}
\crossref{https://doi.org/10.17377/daio.2016.23.510}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3557596}
\elib{http://elibrary.ru/item.asp?id=26129771}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 2
\pages 288--301
\crossref{https://doi.org/10.1134/S1990478916020137}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971247579}


Linking options:
  • http://mi.mathnet.ru/eng/da847
  • http://mi.mathnet.ru/eng/da/v23/i2/p100

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. V. Prosolupov, G. Sh. Tamasyan, “Complexity estimation for an algorithm of searching for zero of a piecewise linear convex function”, J. Appl. Industr. Math., 12:2 (2018), 325–333  mathnet  crossref  crossref  elib
    2. B. V. Ganin, A. I. Golikov, Yu. G. Evtushenko, “Projective-dual method for solving systems of linear equations with nonnegative variables”, Comput. Math. Math. Phys., 58:2 (2018), 159–169  mathnet  crossref  crossref  isi  elib
  • Дискретный анализ и исследование операций
    Number of views:
    This page:213
    Full text:56
    References:25
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020