RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2016, Volume 23, Number 3, Pages 21–34 (Mi da850)  

This article is cited in 4 scientific papers (total in 4 papers)

Exact pseudopolinomial algorithms for a balanced $2$-clustering problem

A. V. Kel'manovab, A. V. Motkovab

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia

Abstract: We consider the strongly NP-hard problem of partitioning a set of Euclidean points into two clusters so as to minimize the sum (over both clusters) of the weighted sum of the squared intracluster distances from the elements of the clusters to their centers. The weights of sums are the sizes of the clusters. The center of one cluster is given as input, while the center of the other cluster is unknown and determined as the average value over all points in the cluster (the geometric center). The two versions of the problems are analyzed in which the cluster sizes are either parts of the input or optimization variables. We present and prove exact pseudopolynomial algorithms in the case of integer components of the input points and fixed space dimension. Bibliogr. 24.

Keywords: Euclidean space, balanced clustering, NP-hardness, integer inputs, fixed space dimension, exact pseudopolynomial algorithm.

Funding Agency Grant Number
Russian Science Foundation 16-11-10041


DOI: https://doi.org/10.17377/daio.2016.23.520

Full text: PDF file (260 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2016, 10:3, 349–355

Bibliographic databases:

Document Type: Article
UDC: 519.16+519.85
Received: 25.05.2016

Citation: A. V. Kel'manov, A. V. Motkova, “Exact pseudopolinomial algorithms for a balanced $2$-clustering problem”, Diskretn. Anal. Issled. Oper., 23:3 (2016), 21–34; J. Appl. Industr. Math., 10:3 (2016), 349–355

Citation in format AMSBIB
\Bibitem{KelMot16}
\by A.~V.~Kel'manov, A.~V.~Motkova
\paper Exact pseudopolinomial algorithms for a~balanced $2$-clustering problem
\jour Diskretn. Anal. Issled. Oper.
\yr 2016
\vol 23
\issue 3
\pages 21--34
\mathnet{http://mi.mathnet.ru/da850}
\crossref{https://doi.org/10.17377/daio.2016.23.520}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3563714}
\elib{http://elibrary.ru/item.asp?id=26129765}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 3
\pages 349--355
\crossref{https://doi.org/10.1134/S1990478916030054}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983502949}


Linking options:
  • http://mi.mathnet.ru/eng/da850
  • http://mi.mathnet.ru/eng/da/v23/i3/p21

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Kelmanov, A. V. Motkova, V. V. Shenmaier, “Priblizhennaya skhema dlya zadachi vzveshennoi 2-klasterizatsii s fiksirovannym tsentrom odnogo klastera”, Tr. IMM UrO RAN, 23, no. 3, 2017, 159–170  mathnet  crossref  elib
    2. A. Kel'manov, “Efficient approximation algorithms for some NP-hard problems of partitioning a set and a sequence”, 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), IEEE, 2017, 87–90  crossref  isi
    3. A. Kel'manov, A. Motkova, “An approximation polynomial-time algorithm for a cardinality-weighted 2-clustering problem”, 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), IEEE, 2017, 94–96  crossref  isi
    4. A. V. Kel'manov, A. V. Motkova, “Polynomial-time approximation algorithm for the problem of cardinality-weighted variance-based 2-clustering with a given center”, Comput. Math. Math. Phys., 58:1 (2018), 130–136  mathnet  crossref  crossref  isi  elib
  • Дискретный анализ и исследование операций
    Number of views:
    This page:103
    Full text:19
    References:16
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019