|
This article is cited in 4 scientific papers (total in 4 papers)
Comparison of models of planning public-private partnership
S. M. Lavlinskiia, A. A. Paninab, A. V. Plyasunovab a Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
Abstract:
We propose two new mathematical formulation of the planning problem of public-private partnership. One of the models is bilevel and the other is one-level. The results that characterize the computational complexity of these models are shown. We develop some exact and approximate algorithms for solving these problems. A special model polygon is built to carry out a computational experiment. The polygon takes into account the specificity of the original information base. On the basis of the numerical results of the experiment, we compare the properties of optimal solutions in different models. This allows us to assess the adequacy of the underlying assumptions of the models with the current state of affairs in the field of project management of public-private partnership. Ill. 13, bibliogr. 16.
Keywords:
public-private partnership, bilevel problem, approximation hierarchy, NPO-hard problem, class $\Sigma^P_2O$, hybrid algorithm, local search.
DOI:
https://doi.org/10.17377/daio.2016.23.527
Full text:
PDF file (1173 kB)
References:
PDF file
HTML file
English version:
Journal of Applied and Industrial Mathematics, 2016, 10:3, 356–369
Bibliographic databases:
UDC:
519.87+519.854 Received: 11.04.2016 Revised: 10.05.2016
Citation:
S. M. Lavlinskii, A. A. Panin, A. V. Plyasunov, “Comparison of models of planning public-private partnership”, Diskretn. Anal. Issled. Oper., 23:3 (2016), 35–60; J. Appl. Industr. Math., 10:3 (2016), 356–369
Citation in format AMSBIB
\Bibitem{LavPanPly16}
\by S.~M.~Lavlinskii, A.~A.~Panin, A.~V.~Plyasunov
\paper Comparison of models of planning public-private partnership
\jour Diskretn. Anal. Issled. Oper.
\yr 2016
\vol 23
\issue 3
\pages 35--60
\mathnet{http://mi.mathnet.ru/da851}
\crossref{https://doi.org/10.17377/daio.2016.23.527}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3563715}
\elib{https://elibrary.ru/item.asp?id=25792211}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 3
\pages 356--369
\crossref{https://doi.org/10.1134/S1990478916030066}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983543052}
Linking options:
http://mi.mathnet.ru/eng/da851 http://mi.mathnet.ru/eng/da/v23/i3/p35
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
I. P. Glazyrina, S. M. Lavlinskii, “Transaction costs and problems in the development of the mineral and raw-material base of the resource region”, Zh. Novaya Ekon. Assotsiatsiya, 2018, no. 2, 121–143
-
S. M. Lavlinskii, A. A. Panin, A. V. Plyasunov, “Modeli Shtakelberga v territorialnom planirovanii”, Avtomat. i telemekh., 2019, no. 2, 111–124
-
A. V. Kononov, A. A. Panin, A. V. Plyasunov, “A bilevel competitive location and pricing model with nonuniform split of demand”, J. Appl. Industr. Math., 13:3 (2019), 500–510
-
S. Lavlinskii, A. Panin, A. V. Plyasunov, “Stackelberg model and public-private partnerships in the natural resources sector of Russia”, Mathematical Optimization Theory and Operations Research, Lecture Notes in Computer Science, 11548, eds. M. Khachay, Y. Kochetov, P. Pardalos, Springer, 2019, 158–171
|
Number of views: |
This page: | 177 | Full text: | 59 | References: | 21 | First page: | 2 |
|