RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2016, Volume 23, Number 3, Pages 61–80 (Mi da852)  

Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes

A. N. Maksimenko

Yaroslavl State University, 14 Sovetskaya St., 150000 Yaroslavl, Russia

Abstract: This paper deals with the following question: Can combinatorial properties of polytopes help in finding an estimate for the complexity of the corresponding optimization problem? Sometimes, these key characteristics of complexity were the number of hyperfaces of the polytope, diameter and clique number of the graph of the polytope, the rectangle covering number of the vertex-facet incidence matrix, and some other characteristics. In this paper, we provide several families of polytopes for which the above-mentioned characteristics differ significantly from the real computational complexity of the corresponding optimization problems. In particular, we give two examples of discrete optimization problem whose polytopes are combinatorially equivalent and they have the same lengths of the binary representation of the coordinates of the polytope vertices. Nevertheless, the first problem is solvable in polynomial time, while the second problem has exponential complexity. Ill. 1, bibliogr. 22.

Keywords: NP-complex problem, vertex-facet incidence matrix, combinatorial equivalence, graph of a polytope, graph clique number, extended formulation, cyclic polytope.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 2014/258


DOI: https://doi.org/10.17377/daio.2016.23.515

Full text: PDF file (311 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2016, 10:3, 370–379

Bibliographic databases:

UDC: 519.854
Received: 13.10.2015
Revised: 19.04.2016

Citation: A. N. Maksimenko, “Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes”, Diskretn. Anal. Issled. Oper., 23:3 (2016), 61–80; J. Appl. Industr. Math., 10:3 (2016), 370–379

Citation in format AMSBIB
\Bibitem{Mak16}
\by A.~N.~Maksimenko
\paper Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes
\jour Diskretn. Anal. Issled. Oper.
\yr 2016
\vol 23
\issue 3
\pages 61--80
\mathnet{http://mi.mathnet.ru/da852}
\crossref{https://doi.org/10.17377/daio.2016.23.515}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3563716}
\elib{http://elibrary.ru/item.asp?id=26681830}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 3
\pages 370--379
\crossref{https://doi.org/10.1134/S1990478916030078}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983527686}


Linking options:
  • http://mi.mathnet.ru/eng/da852
  • http://mi.mathnet.ru/eng/da/v23/i3/p61

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретный анализ и исследование операций
    Number of views:
    This page:174
    Full text:46
    References:20
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020