RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2017, Volume 24, Number 1, Pages 21–30 (Mi da861)  

This article is cited in 1 scientific paper (total in 1 paper)

On list incidentor $(k,l)$-colorings

E. I. Vasilyevaa, A. V. Pyatkinba

a Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
b Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia

Abstract: A proper incidentor coloring is called a $(k,l)$-coloring if the difference between the colors of the final and initial incidentors ranges between $k$ and $l$. In the list variant, the extra restriction is added: The color of each incidentor must belong to the set of admissible colors of the arc. In order to make this restriction reasonable we assume that the set of admissible colors for each arc is an integer interval. The minimum length of the interval that guarantees the existence of a list incidentor $(k,l)$-coloring is called a list incidentor $(k,l)$-chromatic number. Some bounds for the list incidentor $(k,l)$-chromatic number are proved for multigraphs of degree $2$ and $4$. Bibliogr. 13.

Keywords: list coloring, incidentor, $(k,l)$-coloring.

Funding Agency Grant Number
Russian Science Foundation 16-11-10041


DOI: https://doi.org/10.17377/daio.2017.24.542

Full text: PDF file (287 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2017, 11:1, 125–129

Bibliographic databases:

UDC: 519.8
Received: 24.05.2016
Revised: 06.06.2016

Citation: E. I. Vasilyeva, A. V. Pyatkin, “On list incidentor $(k,l)$-colorings”, Diskretn. Anal. Issled. Oper., 24:1 (2017), 21–30; J. Appl. Industr. Math., 11:1 (2017), 125–129

Citation in format AMSBIB
\Bibitem{VasPya17}
\by E.~I.~Vasilyeva, A.~V.~Pyatkin
\paper On list incidentor $(k,l)$-colorings
\jour Diskretn. Anal. Issled. Oper.
\yr 2017
\vol 24
\issue 1
\pages 21--30
\mathnet{http://mi.mathnet.ru/da861}
\crossref{https://doi.org/10.17377/daio.2017.24.542}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3622063}
\elib{http://elibrary.ru/item.asp?id=28905203}
\transl
\jour J. Appl. Industr. Math.
\yr 2017
\vol 11
\issue 1
\pages 125--129
\crossref{https://doi.org/10.1134/S1990478917010148}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013888606}


Linking options:
  • http://mi.mathnet.ru/eng/da861
  • http://mi.mathnet.ru/eng/da/v24/i1/p21

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Pyatkin, “O predpisannoi $(k,l)$-raskraske intsidentorov multigrafov chetnoi stepeni pri nekotorykh znacheniyakh $k$ i $l$”, Tr. IMM UrO RAN, 25, no. 2, 2019, 177–184  mathnet  crossref  elib
  • Дискретный анализ и исследование операций
    Number of views:
    This page:132
    Full text:17
    References:28
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020