RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2017, Volume 24, Number 1, Pages 31–55 (Mi da862)  

On teaching sets for $2$-threshold functions of two variables

E. M. Zamaraeva

Lobachevsky State University, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia

Abstract: We consider $k$-threshold functions of $n$ variables, i.e. the functions representable as the conjunction of $k$ threshold functions. For $n=2$, $k=2$, we give upper bounds for the cardinality of the minimal teaching set depending on the various properties of the function. Illustr. 6, bibliogr. 9.

Keywords: machine learning, threshold function, teaching dimension, teaching set.

DOI: https://doi.org/10.17377/daio.2017.24.508

Full text: PDF file (389 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2017, 11:1, 130–144

Bibliographic databases:

UDC: 519.715
Received: 31.08.2015
Revised: 02.08.2016

Citation: E. M. Zamaraeva, “On teaching sets for $2$-threshold functions of two variables”, Diskretn. Anal. Issled. Oper., 24:1 (2017), 31–55; J. Appl. Industr. Math., 11:1 (2017), 130–144

Citation in format AMSBIB
\Bibitem{Zam17}
\by E.~M.~Zamaraeva
\paper On teaching sets for $2$-threshold functions of two variables
\jour Diskretn. Anal. Issled. Oper.
\yr 2017
\vol 24
\issue 1
\pages 31--55
\mathnet{http://mi.mathnet.ru/da862}
\crossref{https://doi.org/10.17377/daio.2017.24.508}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3622064}
\elib{http://elibrary.ru/item.asp?id=28905204}
\transl
\jour J. Appl. Industr. Math.
\yr 2017
\vol 11
\issue 1
\pages 130--144
\crossref{https://doi.org/10.1134/S199047891701015X}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013925741}


Linking options:
  • http://mi.mathnet.ru/eng/da862
  • http://mi.mathnet.ru/eng/da/v24/i1/p31

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретный анализ и исследование операций
    Number of views:
    This page:150
    Full text:23
    References:21
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020