RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2018, Volume 25, Number 1, Pages 42–74 (Mi da889)  

On the complexity of multivalued logic functions over some infinite basis

V. V. Kochergina, A. V. Mikhailovichb

a Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
b National Research University "Higher School of Economics", 20 Myasnitskaya St., 101000 Moscow, Russia

Abstract: Under study is the complexity of the realization of $k$-valued logic functions $(k\ge3)$ by logic circuits in the infinite basis consisting of the Post negation (i.e., the function $(x+1)\bmod k$) and all monotone functions. The complexity of the circuit is the total number of elements of this circuit. For an arbitrary function $f$, we find the lower and upper bounds of complexity which differ from one another at most by $1$ and have the form $3\log_3(d(f)+1)+O(1)$, where $d(f)$ is the maximal number of the decrease of the value of $f$ taken over all increasing chains of tuples of values of the variables. We find the exact value of the corresponding Shannon function which characterizes the complexity of the most complex function of a given number of variables. Illustr. 4, bibliogr. 24.

Keywords: multivalued logic functions, logic circuit, infinite basis, inversion complexity.

DOI: https://doi.org/10.17377/daio.2018.25.587

Full text: PDF file (430 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2018, 12:1, 40–58

UDC: 519.714
Received: 04.08.2017
Revised: 06.10.2017

Citation: V. V. Kochergin, A. V. Mikhailovich, “On the complexity of multivalued logic functions over some infinite basis”, Diskretn. Anal. Issled. Oper., 25:1 (2018), 42–74; J. Appl. Industr. Math., 12:1 (2018), 40–58

Citation in format AMSBIB
\Bibitem{KocMik18}
\by V.~V.~Kochergin, A.~V.~Mikhailovich
\paper On the complexity of multivalued logic functions over some infinite basis
\jour Diskretn. Anal. Issled. Oper.
\yr 2018
\vol 25
\issue 1
\pages 42--74
\mathnet{http://mi.mathnet.ru/da889}
\crossref{https://doi.org/10.17377/daio.2018.25.587}
\elib{https://elibrary.ru/item.asp?id=32729778}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 1
\pages 40--58
\crossref{https://doi.org/10.1134/S1990478918010052}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043246271}


Linking options:
  • http://mi.mathnet.ru/eng/da889
  • http://mi.mathnet.ru/eng/da/v25/i1/p42

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретный анализ и исследование операций
    Number of views:
    This page:103
    Full text:10
    References:8
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020