RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2018, Volume 25, Number 4, Pages 15–26 (Mi da906)  

Maximal $k$-intersecting families of subsets and Boolean functions

Yu. A. Zuev

Bauman Moscow State Technical University, 5 Vtoraya Baumanskaya St., 105005 Moscow, Russia

Abstract: A family of subsets of an $n$-element set is $k$-intersecting if the intersection of every $k$ subsets in the family is nonempty. A family is maximal $k$-intersecting if no subset can be added to the family without violating the $k$-intersection property. There is a one-to-one correspondence between the families of subsets and Boolean functions defined as follows: To each family of subsets, assign the Boolean function whose unit tuples are the characteristic vectors of the subsets. We show that a family of subsets is maximal $2$-intersecting if and only if the corresponding Boolean function is monotone and selfdual. Asymptotics for the number of such families is obtained. Some properties of Boolean functions corresponding to k-intersecting families are established for $k>2$. Bibliogr. 9.

Keywords: k-intersecting family of subsets, monotone selfdual Boolean function, layer of Boolean cube.

DOI: https://doi.org/10.17377/daio.2018.25.602

Full text: PDF file (319 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2018, 12:4, 797–802

Document Type: Article
UDC: 519.71
Received: 11.12.2017
Revised: 16.03.2018

Citation: Yu. A. Zuev, “Maximal $k$-intersecting families of subsets and Boolean functions”, Diskretn. Anal. Issled. Oper., 25:4 (2018), 15–26; J. Appl. Industr. Math., 12:4 (2018), 797–802

Citation in format AMSBIB
\Bibitem{Zue18}
\by Yu.~A.~Zuev
\paper Maximal $k$-intersecting families of subsets and Boolean functions
\jour Diskretn. Anal. Issled. Oper.
\yr 2018
\vol 25
\issue 4
\pages 15--26
\mathnet{http://mi.mathnet.ru/da906}
\crossref{https://doi.org/10.17377/daio.2018.25.602}
\elib{http://elibrary.ru/item.asp?id=36449708}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 4
\pages 797--802
\crossref{https://doi.org/10.1134/S1990478918040191}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058073919}


Linking options:
  • http://mi.mathnet.ru/eng/da906
  • http://mi.mathnet.ru/eng/da/v25/i4/p15

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретный анализ и исследование операций
    Number of views:
    This page:28
    References:6
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019