RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2018, Volume 25, Number 4, Pages 46–58 (Mi da908)  

Extensions of the positive closure operator by using logical connectives

S. S. Marchenkov

Lomonosov Moscow State University, 1 Leninskie gory, 119991 Moscow, Russia

Abstract: The positive closure operator is defined on using the logical formulas containing the logical connectives $\vee,&$ and the quantifier $\exists$. Extensions of the positive closure operator are considered by using arbitrary (and not necessarily binary) logical connectives. It is proved that each proper extension of the positive closure operator by using local connectives gives either an operator with a full system of logical connectives or an implication closure operator (extension by using logical implication). For the implication closure operator, the description of all closed classes is found in terms of endomorphism semigroups. Bibliogr. 11.

Keywords: positive closure operator, parametric closure operator.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00593
The author was supported by the Russian Foundation for Basic Research (project no. 16-01-00593).


DOI: https://doi.org/10.17377/daio.2018.25.605

Full text: PDF file (325 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2018, 12:4, 678–683

UDC: 519.716
Received: 22.12.2017
Revised: 14.05.2018

Citation: S. S. Marchenkov, “Extensions of the positive closure operator by using logical connectives”, Diskretn. Anal. Issled. Oper., 25:4 (2018), 46–58; J. Appl. Industr. Math., 12:4 (2018), 678–683

Citation in format AMSBIB
\Bibitem{Mar18}
\by S.~S.~Marchenkov
\paper Extensions of the positive closure operator by using logical connectives
\jour Diskretn. Anal. Issled. Oper.
\yr 2018
\vol 25
\issue 4
\pages 46--58
\mathnet{http://mi.mathnet.ru/da908}
\crossref{https://doi.org/10.17377/daio.2018.25.605}
\elib{http://elibrary.ru/item.asp?id=36449710}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 4
\pages 678--683
\crossref{https://doi.org/10.1134/S1990478918040087}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058069592}


Linking options:
  • http://mi.mathnet.ru/eng/da908
  • http://mi.mathnet.ru/eng/da/v25/i4/p46

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретный анализ и исследование операций
    Number of views:
    This page:50
    Full text:4
    References:7
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019