RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk, 2004, Volume 394, Number 5, Pages 583–585 (Mi dan1596)  

This article is cited in 7 scientific papers (total in 7 papers)

The Pontryagin maximum principle for an optimal control problem with a functional specified by an improper integral

S. M. Aseev, A. V. Kryazhimskii



English version:
Doklady Mathematics, 2004, 69:1, 89–91

Bibliographic databases:

Document Type: Article

Linking options:
  • http://mi.mathnet.ru/eng/dan1596

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. M. Aseev, A. V. Kryazhimskii, “The Pontryagin Maximum Principle and Optimal Economic Growth Problems”, Proc. Steklov Inst. Math., 257 (2007), 1–255  mathnet  crossref  mathscinet  zmath  elib
    2. A. A. Krasovskii, A. M. Tarasyev, “Dynamic optimization of investments in the economic growth models”, Autom. Remote Control, 68:10 (2007), 1765–1777  mathnet  crossref  mathscinet  zmath
    3. S. M. Aseev, A. V. Kryazhimskii, “On a Class of Optimal Control Problems Arising in Mathematical Economics”, Proc. Steklov Inst. Math., 262 (2008), 10–25  mathnet  crossref  mathscinet  zmath  isi
    4. S. M. Aseev, K. O. Besov, A. V. Kryazhimskiy, “Infinite-horizon optimal control problems in economics”, Russian Math. Surveys, 67:2 (2012), 195–253  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. S. M. Aseev, “On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems”, Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 11–21  mathnet  crossref  mathscinet  isi  elib  elib
    6. K. O. Besov, “On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function”, Proc. Steklov Inst. Math., 284 (2014), 50–80  mathnet  crossref  crossref  isi
    7. S. M. Aseev, “Adjoint variables and intertemporal prices in infinite-horizon optimal control problems”, Proc. Steklov Inst. Math., 290:1 (2015), 223–237  mathnet  crossref  crossref  zmath  isi  elib  elib
  • Number of views:
    This page:41

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019