Doklady Akademii Nauk SSSR
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk SSSR, 1961, Volume 139, Number 3, Pages 548–551 (Mi dan25286)  

This article is cited in 11 scientific papers (total in 11 papers)

MATHEMATICS

A class of completely continuous operators

V. I. Matsaev

Physical Engineering Institute of Low Temperatures, UkrSSR Academy of Sciences, Khar'kov

Full text: PDF file (499 kB)

Bibliographic databases:
Presented: А. Н. Колмогоров
Received: 16.03.1961

Citation: V. I. Matsaev, “A class of completely continuous operators”, Dokl. Akad. Nauk SSSR, 139:3 (1961), 548–551

Citation in format AMSBIB
\Bibitem{Mat61}
\by V.~I.~Matsaev
\paper A class of completely continuous operators
\jour Dokl. Akad. Nauk SSSR
\yr 1961
\vol 139
\issue 3
\pages 548--551
\mathnet{http://mi.mathnet.ru/dan25286}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0131769}
\zmath{https://zbmath.org/?q=an:0134.12001}


Linking options:
  • http://mi.mathnet.ru/eng/dan25286
  • http://mi.mathnet.ru/eng/dan/v139/i3/p548

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. A. Larionov, “Self-adjoint quadratic bundles”, Math. USSR-Izv., 3:1 (1969), 131–145  mathnet  crossref  mathscinet  zmath
    2. A. S. Markus, “The problem of spectral synthesis for operators with point spectrum”, Math. USSR-Izv., 4:3 (1970), 670–696  mathnet  crossref  mathscinet  zmath
    3. G. V. Radzievskii, “The problem of the completeness of root vectors in the spectral theory of operator-valued functions”, Russian Math. Surveys, 37:2 (1982), 91–164  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. L. N. Nikol'skaya, J. B. Farforovskaja, “Toeplitz and Hankel matrices as Hadamard–Schur multipliers”, St. Petersburg Math. J., 15:6 (2004), 915–928  mathnet  crossref  mathscinet  zmath
    5. A. P. Solodov, “Concerning an Example of Paskiewich”, Math. Notes, 78:2 (2005), 258–263  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. St. Petersburg Math. J., 20:3 (2009), 493–506  mathnet  crossref  mathscinet  zmath  isi
    7. L. N. Nikol'skaya, Yu. B. Farforovskaya, “Hölder functions are operator-Hölder”, St. Petersburg Math. J., 22:4 (2011), 657–668  mathnet  crossref  mathscinet  zmath  isi
    8. A. A. Shkalikov, “Perturbations of self-adjoint and normal operators with discrete spectrum”, Russian Math. Surveys, 71:5 (2016), 907–964  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. V. I. Lomonosov, V. S. Shul'man, “Invariant Subspaces for Commuting Operators on a Real Banach Space”, Funct. Anal. Appl., 52:1 (2018), 53–56  mathnet  crossref  crossref  mathscinet  isi  elib
    10. V. I. Lomonosov, V. S. Shulman, “Halmos problems and related results in the theory of invariant subspaces”, Russian Math. Surveys, 73:1 (2018), 31–90  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. A. P. Solodov, “On Orthogonal Systems with Extremely Large $L_2$-Norm of the Maximal Operator”, Math. Notes, 109:3 (2021), 459–472  mathnet  crossref  crossref  isi
  • Number of views:
    This page:153
    Full text:81

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021