RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk, 2000, Volume 375, Number 3, Pages 343–346 (Mi dan2587)  

This article is cited in 14 scientific papers (total in 15 papers)

Integrability in the sense of Jacobi in the problem of the motion of a four-dimensional rigid body in a resisting medium

M. V. Shamolin



English version:
Doklady Mathematics, 2000, 45:11, 632–634

Bibliographic databases:


Linking options:
  • http://mi.mathnet.ru/eng/dan2587

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Shamolin, “An integrable case of dynamical equations on $so(4)\times\mathbb R^4$”, Russian Math. Surveys, 60:6 (2005), 1245–1246  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. M. V. Shamolin, “Dynamical systems with variable dissipation: Approaches, methods, and applications”, J. Math. Sci., 162:6 (2009), 741–908  mathnet  crossref  mathscinet  zmath  elib  elib
    3. M. V. Shamolin, “A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field”, Russian Math. Surveys, 65:1 (2010), 183–185  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. V. V. Trofimov, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, J. Math. Sci., 180:4 (2012), 365–530  mathnet  crossref  mathscinet
    5. M. V. Shamolin, “Novyi sluchai polnoi integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Vestn. SamGU. Estestvennonauchn. ser., 2011, no. 5(86), 187–189  mathnet
    6. N. V. Pokhodnya, M. V. Shamolin, “Novyi sluchai integriruemosti v dinamike mnogomernogo tela”, Vestn. SamGU. Estestvennonauchn. ser., 2012, no. 9(100), 136–150  mathnet
    7. M. V. Shamolin, “Complete list of first integrals for dynamic equations of motion of a solid body in a resisting medium with consideration of linear damping”, Moscow University Mechanics Bulletin, 67:4 (2012), 92–95  mathnet  crossref
    8. M. V. Shamolin, “New case of integrability of dynamic equations on the tangent bundle of a 3-sphere”, Russian Math. Surveys, 68:5 (2013), 963–965  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. N. V. Pokhodnya, M. V. Shamolin, “Nekotorye usloviya integriruemosti dinamicheskikh sistem v transtsendentnykh funktsiyakh”, Vestn. SamGU. Estestvennonauchn. ser., 2013, no. 9/1(110), 35–41  mathnet
    10. N. V. Pokhodnya, M. V. Shamolin, “Integriruemye sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Vestn. SamGU. Estestvennonauchn. ser., 2014, no. 7(118), 60–69  mathnet
    11. M. V. Shamolin, “Integrable cases in the dynamics of a multi-dimensional rigid body in a nonconservative field in the presence of a tracking force”, J. Math. Sci., 214:6 (2016), 865–891  mathnet  crossref  mathscinet
    12. M. V. Shamolin, “Some classes of integrable problems in spatial dynamics of a rigid body in a nonconservative force field”, J. Math. Sci. (N. Y.), 210:3 (2015), 292–330  mathnet  crossref
    13. M. V. Shamolin, “Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications”, J. Math. Sci., 230:2 (2018), 185–353  mathnet  crossref  elib
    14. M. V. Shamolin, “New case of complete integrability of dynamics equations on a tangent fibering to a $3\mathrm{D}$ sphere”, Moscow University Mathematics Bulletin, 70:3 (2015), 111–114  mathnet  crossref  mathscinet
    15. M. V. Shamolin, “Integrable systems on the tangent bundle of a multi-dimensional sphere”, J. Math. Sci. (N. Y.), 234:4 (2018), 548–590  mathnet  crossref
  • Number of views:
    This page:44

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019