Doklady Akademii Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk, 2000, Volume 371, Number 4, Pages 480–483 (Mi dan2785)  

This article is cited in 14 scientific papers (total in 14 papers)

A new family of phase portraits in the three-dimensional dynamics of a rigid body interacting with a medium

M.V. Shamolin



English version:
Doklady Mathematics, 2000, 45:4, 171–174

Bibliographic databases:

Linking options:
  • http://mi.mathnet.ru/eng/dan2785

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Shamolin, “A case of complete integrability in the dynamics on the tangent bundle of a two-dimensional sphere”, Russian Math. Surveys, 62:5 (2007), 1009–1011  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. M. V. Shamolin, “Dynamical systems with variable dissipation: Approaches, methods, and applications”, J. Math. Sci., 162:6 (2009), 741–908  mathnet  crossref  mathscinet  zmath  elib  elib
    3. V. V. Trofimov, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, J. Math. Sci., 180:4 (2012), 365–530  mathnet  crossref  mathscinet
    4. M. V. Shamolin, “Integrable cases in the dynamics of a multi-dimensional rigid body in a nonconservative field in the presence of a tracking force”, J. Math. Sci., 214:6 (2016), 865–891  mathnet  crossref  mathscinet
    5. M. V. Shamolin, “Some classes of integrable problems in spatial dynamics of a rigid body in a nonconservative force field”, J. Math. Sci. (N. Y.), 210:3 (2015), 292–330  mathnet  crossref
    6. M. V. Shamolin, “Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications”, J. Math. Sci., 230:2 (2018), 185–353  mathnet  crossref  elib
    7. M. V. Shamolin, “Sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 150, VINITI RAN, M., 2018, 110–118  mathnet  mathscinet
    8. M. V. Shamolin, “Voprosy kachestvennogo analiza v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 150, VINITI RAN, M., 2018, 130–142  mathnet  mathscinet
    9. M. V. Shamolin, “Family of phase portraits in the spatial dynamics of a rigid body interacting with a resisting medium”, J. Appl. Industr. Math., 13:2 (2019), 327–339  mathnet  crossref  crossref  elib
    10. M. V. Shamolin, “Nekotorye integriruemye dinamicheskie sistemy nechetnogo poryadka s dissipatsiei”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, M., 2020, 52–69  mathnet  crossref  mathscinet
    11. M. V. Shamolin, “Sistemy s dissipatsiei: otnositelnaya grubost, negrubost razlichnykh stepenei i integriruemost”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, M., 2020, 70–82  mathnet  crossref  mathscinet
    12. M. V. Shamolin, “Dvizhenie tverdogo tela s perednim konusom v soprotivlyayuscheisya srede: kachestvennyi analiz i integriruemost”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, M., 2020, 83–108  mathnet  crossref  mathscinet
    13. M. V. Shamolin, “Topograficheskie sistemy Puankare i sistemy sravneniya malykh i vysokikh poryadkov”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 187, VINITI RAN, M., 2020, 50–67  mathnet  crossref
    14. M. V. Shamolin, “Predelnye mnozhestva differentsialnykh uravnenii okolo singulyarnykh osobykh tochek”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 187, VINITI RAN, M., 2020, 119–128  mathnet  crossref
  • Number of views:
    This page:33

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021