RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk SSSR, 1965, Volume 161, Number 6, Pages 1285–1288 (Mi dan31024)  

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On an integrable case of the Riemann boundary problem for several functions

G. P. Cherepanov

Institute for Mechanics, USSR Academy of Sciences

Full text: PDF file (452 kB)

Bibliographic databases:

Document Type: Article
Presented: I. N. Vekua
Received: 22.08.1964

Citation: G. P. Cherepanov, “On an integrable case of the Riemann boundary problem for several functions”, Dokl. Akad. Nauk SSSR, 161:6 (1965), 1285–1288

Citation in format AMSBIB
\Bibitem{Che65}
\by G.~P.~Cherepanov
\paper On an integrable case of the Riemann boundary problem for several functions
\jour Dokl. Akad. Nauk SSSR
\yr 1965
\vol 161
\issue 6
\pages 1285--1288
\mathnet{http://mi.mathnet.ru/dan31024}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0177134}
\zmath{https://zbmath.org/?q=an:0144.07404}


Linking options:
  • http://mi.mathnet.ru/eng/dan31024
  • http://mi.mathnet.ru/eng/dan/v161/i6/p1285

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. I. Zverovich, “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces”, Russian Math. Surveys, 26:1 (1971), 117–192  mathnet  crossref  mathscinet  zmath
  • Number of views:
    This page:27
    Full text:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019