RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk SSSR, 1965, Volume 165, Number 3, Pages 471–473 (Mi dan31825)  

This article is cited in 13 scientific papers (total in 13 papers)

MATHEMATICS

A generalization of the concept of a Lie algebra

A. Blokh

Moscow State (V. I. Lenin) Pedagogical Institute

Full text: PDF file (466 kB)

Bibliographic databases:
UDC: 512.934
Presented: П. С. Новиков
Received: 09.04.1965

Citation: A. Blokh, “A generalization of the concept of a Lie algebra”, Dokl. Akad. Nauk SSSR, 165:3 (1965), 471–473

Citation in format AMSBIB
\Bibitem{Blo65}
\by A.~Blokh
\paper A generalization of the concept of a Lie algebra
\jour Dokl. Akad. Nauk SSSR
\yr 1965
\vol 165
\issue 3
\pages 471--473
\mathnet{http://mi.mathnet.ru/dan31825}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0193114}
\zmath{https://zbmath.org/?q=an:0139.25702}


Linking options:
  • http://mi.mathnet.ru/eng/dan31825
  • http://mi.mathnet.ru/eng/dan/v165/i3/p471

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. S. Burgin, “Schreier varieties of linear $\Omega$-algebras”, Math. USSR-Sb., 22:4 (1974), 561–579  mathnet  crossref  mathscinet  zmath
    2. S. P. Mishchenko, O. I. Cherevatenko, “Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth”, J. Math. Sci., 152:2 (2008), 282–287  mathnet  crossref  mathscinet  zmath  elib  elib
    3. S. M. Ratseev, “The Growth of Varieties of Leibniz Algebras with Nilpotent Commutator Subalgebra”, Math. Notes, 82:1 (2007), 96–103  mathnet  crossref  crossref  mathscinet  isi  elib
    4. T. V. Skoraya, Yu. Yu. Frolova, “O nekotorykh mnogoobraziyakh algebr Leibnitsa”, Vestn. SamGU. Estestvennonauchn. ser., 2011, no. 5(86), 71–80  mathnet
    5. T. V. Skoraya, A. V. Shvetsova, “Novye svoistva mnogoobrazii algebr Leibnitsa”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:4(2) (2013), 124–129  mathnet  crossref  elib
    6. T. V. Skoraya, Yu. Yu. Frolova, “O mnogoobrazii $_{3}\mathbf{N}$ algebr Leibnitsa i ego podmnogoobraziyakh”, Chebyshevskii sb., 15:1 (2014), 155–185  mathnet
    7. S. P. Mishchenko, Yu. Yu. Frolova, “Some Extremal Properties of the Variety of Leibniz Algebras Left Nilpotent of Class at Most Three”, Math. Notes, 95:6 (2014), 806–814  mathnet  crossref  crossref  mathscinet  isi  elib
    8. A. V. Polovinkina, T. V. Skoraya, “Usloviya konechnosti kodliny mnogoobraziya algebr Leibnitsa”, Vestn. SamGU. Estestvennonauchn. ser., 2014, no. 10(121), 84–90  mathnet
    9. Ana Rovi, “Lie Algebroids in the Loday–Pirashvili Category”, SIGMA, 11 (2015), 079, 16 pp.  mathnet  crossref
    10. S. M. Ratseev, “On minimal Leibniz algebras with nilpotent commutator subalgebra”, St. Petersburg Math. J., 27:1 (2016), 125–136  mathnet  crossref  mathscinet  isi  elib
    11. V. V. Gorbatsevich, “On liezation of the Leibniz algebras and its applications”, Russian Math. (Iz. VUZ), 60:4 (2016), 10–16  mathnet  crossref  isi
    12. L. M. Camacho, E. M. Cañete, J. R. Gómez, B. A. Omirov, “$3$-filiform Leibniz algebras of maximum length”, Siberian Math. J., 57:1 (2016), 24–35  mathnet  crossref  crossref  mathscinet  isi  elib
    13. Vladimir V. Kirichenko, Leonid A. Kurdachenko, Aleksandr A. Pypka, Igor Ya. Subbotin, “Some aspects of Leibniz algebra theory”, Algebra Discrete Math., 24:1 (2017), 1–33  mathnet
  • Number of views:
    This page:145
    Full text:93

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020