RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk SSSR, 1970, Volume 191, Number 4, Pages 747–750 (Mi dan35310)  

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Nondiscrete topologizability of countable rings

V. I. Arnautov

Mathematics Institute, Computer Center, Academy of Sciences of the Moldavian SSR

Full text: PDF file (533 kB)

Bibliographic databases:
UDC: 519.48
Presented: П. С. Александров
Received: 22.08.1969

Citation: V. I. Arnautov, “Nondiscrete topologizability of countable rings”, Dokl. Akad. Nauk SSSR, 191:4 (1970), 747–750

Citation in format AMSBIB
\Bibitem{Arn70}
\by V.~I.~Arnautov
\paper Nondiscrete topologizability of countable rings
\jour Dokl. Akad. Nauk SSSR
\yr 1970
\vol 191
\issue 4
\pages 747--750
\mathnet{http://mi.mathnet.ru/dan35310}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0258895}
\zmath{https://zbmath.org/?q=an:0209.33903}


Linking options:
  • http://mi.mathnet.ru/eng/dan35310
  • http://mi.mathnet.ru/eng/dan/v191/i4/p747

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Arnautov, G. N. Ermakova, “On the number of ring topologies on countable rings”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 1, 103–114  mathnet
    2. D. I. Saveliev, “On Zariski topologies on polyrings”, Russian Math. Surveys, 72:4 (2017), 770–772  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. V. I. Arnautov, G. N. Ermakova, “On the number of topologies on countable fields”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, no. 1, 79–90  mathnet
  • Number of views:
    This page:54
    Full text:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020