|
This article is cited in 5 scientific papers (total in 5 papers)
MATHEMATICS
The frequency spectrum of a topological space and the classification of spaces
A. V. Arkhangel'skii Lomonosov Moscow State University
Full text:
PDF file (646 kB)
Bibliographic databases:
UDC:
513.831 Presented: П. С. Александров Received: 16.02.1972
Citation:
A. V. Arkhangel'skii, “The frequency spectrum of a topological space and the classification of spaces”, Dokl. Akad. Nauk SSSR, 206:2 (1972), 265–268
Citation in format AMSBIB
\Bibitem{Ark72}
\by A.~V.~Arkhangel'skii
\paper The frequency spectrum of a topological space and the classification of spaces
\jour Dokl. Akad. Nauk SSSR
\yr 1972
\vol 206
\issue 2
\pages 265--268
\mathnet{http://mi.mathnet.ru/dan37114}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0394575}
\zmath{https://zbmath.org/?q=an:0275.54004}
Linking options:
http://mi.mathnet.ru/eng/dan37114 http://mi.mathnet.ru/eng/dan/v206/i2/p265
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. V. Arkhangel'skii, “Structure and classification of topological spaces and cardinal invariants”, Russian Math. Surveys, 33:6 (1978), 33–96
-
V. I. Malykhin, “New methods in general topology connected with forcing”, Russian Math. Surveys, 43:4 (1988), 95–110
-
V. I. Malykhin, “The Suslin hypothesis and its significance for set-theoretic mathematics”, Russian Math. Surveys, 51:3 (1996), 419–437
-
Proc. Steklov Inst. Math., 252 (2006), 122–137
-
A. V. Osipov, “On the Quasinormal Convergence of Functions”, Math. Notes, 109:1 (2021), 120–124
|
Number of views: |
This page: | 73 | Full text: | 53 |
|