Doklady Akademii Nauk SSSR
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk SSSR, 1973, Volume 210, Number 1, Pages 11–14 (Mi dan37624)  

This article is cited in 9 scientific papers (total in 9 papers)

MATHEMATICS

Multivalued solutions and a principle of classification of nonlinear differential equations

A. M. Vinogradov

Lomonosov Moscow State University

Full text: PDF file (661 kB)

Bibliographic databases:
UDC: 513.832/835
Presented: В. С. Владимиров
Received: 29.06.1972

Citation: A. M. Vinogradov, “Multivalued solutions and a principle of classification of nonlinear differential equations”, Dokl. Akad. Nauk SSSR, 210:1 (1973), 11–14

Citation in format AMSBIB
\Bibitem{Vin73}
\by A.~M.~Vinogradov
\paper Multivalued solutions and a principle of classification of nonlinear differential equations
\jour Dokl. Akad. Nauk SSSR
\yr 1973
\vol 210
\issue 1
\pages 11--14
\mathnet{http://mi.mathnet.ru/dan37624}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0348799}
\zmath{https://zbmath.org/?q=an:0306.35003}


Linking options:
  • http://mi.mathnet.ru/eng/dan37624
  • http://mi.mathnet.ru/eng/dan/v210/i1/p11

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. M. Vinogradov, I. S. Krasil'shchik, “What is the hamiltonian formalism?”, Russian Math. Surveys, 30:1 (1975), 177–202  mathnet  crossref  mathscinet  zmath
    2. B. A. Kupershmidt, “O geometrii mnogoobrazii dzhetov”, UMN, 30:5(185) (1975), 211–212  mathnet  mathscinet  zmath
    3. A. P. Krischenko, “O stroenii osobennostei reshenii kvazilineinykh uravnenii”, UMN, 31:3(189) (1976), 219–220  mathnet  mathscinet  zmath
    4. N. Kh. Ibragimov, “On the theory of Lie–Bäcklund transformation groups”, Math. USSR-Sb., 37:2 (1980), 205–226  mathnet  crossref  mathscinet  zmath  isi
    5. E. M. Vorob'ev, “Reduction of differential equations with symmetries”, Math. USSR-Izv., 17:1 (1981), 73–86  mathnet  crossref  mathscinet  zmath  isi
    6. D. V. Tunitsky, “On the global solubility of the Monge–Ampere hyperbolic equations”, Izv. Math., 61:5 (1997), 1069–1111  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. D. V. Tunitsky, “Hyperbolic Monge–Ampère systems”, Sb. Math., 197:8 (2006), 1223–1258  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    8. D. V. Tunitsky, “Multivalued solutions of hyperbolic Monge-Ampère equations: solvability, integrability, approximation”, Sb. Math., 211:3 (2020), 373–421  mathnet  crossref  crossref  mathscinet  isi  elib
    9. I. A. Bogaevsky, D. V. Tunitsky, “Singularities of Multivalued Solutions of Quasilinear Hyperbolic Systems”, Proc. Steklov Inst. Math., 308 (2020), 67–78  mathnet  crossref  crossref  mathscinet  isi  elib
  • Number of views:
    This page:82
    Full text:62

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021