Doklady Akademii Nauk SSSR
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk SSSR, 1978, Volume 241, Number 1, Pages 18–21 (Mi dan41816)  

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Hamilton structures in field theory

A. M. Vinogradov

Lomonosov Moscow State University

Full text: PDF file (674 kB)

Bibliographic databases:
UDC: 513.832/835
Presented: В. С. Владимиров
Received: 12.01.1978

Citation: A. M. Vinogradov, “Hamilton structures in field theory”, Dokl. Akad. Nauk SSSR, 241:1 (1978), 18–21

Citation in format AMSBIB
\Bibitem{Vin78}
\by A.~M.~Vinogradov
\paper Hamilton structures in field theory
\jour Dokl. Akad. Nauk SSSR
\yr 1978
\vol 241
\issue 1
\pages 18--21
\mathnet{http://mi.mathnet.ru/dan41816}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0510883}
\zmath{https://zbmath.org/?q=an:0421.70026}


Linking options:
  • http://mi.mathnet.ru/eng/dan41816
  • http://mi.mathnet.ru/eng/dan/v241/i1/p18

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. I. Mokhov, “Hamiltonian differential operators and contact geometry”, Funct. Anal. Appl., 21:3 (1987), 217–223  mathnet  crossref  mathscinet  zmath  isi
    2. O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. O. I. Mokhov, “Deformations of Poisson Structures by Closed $3$-Forms”, Math. Notes, 89:6 (2011), 899–902  mathnet  crossref  crossref  mathscinet  isi
  • Number of views:
    This page:53
    Full text:43

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021