RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk SSSR, 1981, Volume 258, Number 5, Pages 1045–1046 (Mi dan44515)  

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Asymptotics of the eigenvalues for some elliptic operators acting in bundles over a manifold with a boundary

V. Ya. Ivrii

Magnitogorsk Mining and Metallurgical Institute

Full text: PDF file (269 kB)

Bibliographic databases:
UDC: 517
Presented: С. Л. Соболев
Received: 16.01.1981

Citation: V. Ya. Ivrii, “Asymptotics of the eigenvalues for some elliptic operators acting in bundles over a manifold with a boundary”, Dokl. Akad. Nauk SSSR, 258:5 (1981), 1045–1046

Citation in format AMSBIB
\Bibitem{Ivr81}
\by V.~Ya.~Ivrii
\paper Asymptotics of the eigenvalues for some elliptic operators acting in bundles over a manifold with a boundary
\jour Dokl. Akad. Nauk SSSR
\yr 1981
\vol 258
\issue 5
\pages 1045--1046
\mathnet{http://mi.mathnet.ru/dan44515}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0631914}
\zmath{https://zbmath.org/?q=an:0516.35063}


Linking options:
  • http://mi.mathnet.ru/eng/dan44515
  • http://mi.mathnet.ru/eng/dan/v258/i5/p1045

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. G. Vasil'ev, “Binomial asymptotics of the spectrum of a boundary-value problem”, Funct. Anal. Appl., 27:4 (1983), 309–311  mathnet  crossref  mathscinet  zmath
    2. S. Z. Levendorskii, “Asymptotic behavior of the spectrum of problems of the form $Au=tBu$ for operators that are elliptic in the Douglis–Nirenberg sense”, Funct. Anal. Appl., 18:3 (1984), 253–255  mathnet  crossref  mathscinet  zmath  isi
    3. S. Z. Levendorskii, “The method of approximate spectral projection”, Math. USSR-Izv., 27:3 (1986), 451–502  mathnet  crossref  mathscinet  zmath
  • Number of views:
    This page:36
    Full text:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020