RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk SSSR, 1981, Volume 260, Number 1, Pages 31–35 (Mi dan44681)  

This article is cited in 16 scientific papers (total in 16 papers)

MATHEMATICS

Multivalued functions and functionals. An analogue of the Morse theory

S. P. Novikov

Landau Institute for Theoretical Physics, USSR Academy of Sciences, Chernogolovka Moscow region

Full text: PDF file (677 kB)

Bibliographic databases:

Document Type: Article
UDC: 513.835
Received: 08.04.1981

Citation: S. P. Novikov, “Multivalued functions and functionals. An analogue of the Morse theory”, Dokl. Akad. Nauk SSSR, 260:1 (1981), 31–35

Citation in format AMSBIB
\Bibitem{Nov81}
\by S.~P.~Novikov
\paper Multivalued functions and functionals. An analogue of the Morse theory
\jour Dokl. Akad. Nauk SSSR
\yr 1981
\vol 260
\issue 1
\pages 31--35
\mathnet{http://mi.mathnet.ru/dan44681}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0630459}
\zmath{https://zbmath.org/?q=an:0505.58011}


Linking options:
  • http://mi.mathnet.ru/eng/dan44681
  • http://mi.mathnet.ru/eng/dan/v260/i1/p31

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. S. P. Novikov, “The analytic generalized Hopf invariant. Many-valued functionals”, Russian Math. Surveys, 39:5 (1984), 113–124  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. M. Sh. Farber, “Exactness of the Novikov inequalities”, Funct. Anal. Appl., 19:1 (1985), 40–48  mathnet  crossref  mathscinet  zmath  isi
    4. A. V. Zorich, “The quasiperiodic structure of level surfaces of a Morse 1-form close to a rational one – a problem of S. P. Novikov”, Math. USSR-Izv., 31:3 (1988), 635–655  mathnet  crossref  mathscinet  zmath
    5. O. I. Bogoyavlenskii, “Breaking solitons in $2+1$-dimensional integrable equations”, Russian Math. Surveys, 45:4 (1990), 1–89  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    6. Yu. P. Solov'ev, “The topology of four-dimensional manifolds”, Russian Math. Surveys, 46:2 (1991), 167–232  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. I. A. Taimanov, “Nonselfintersecting closed extremals of multivalued or not everywhere positive functionals”, Math. USSR-Izv., 38:2 (1992), 359–374  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    8. I. A. Taimanov, “Closed extremals on two-dimensional manifolds”, Russian Math. Surveys, 47:2 (1992), 163–211  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    9. A. V. Pajitnov, “Simple homotopy type of the Novikov complex and the Lefschetz $\zeta$-function of a gradient flow”, Russian Math. Surveys, 54:1 (1999), 119–169  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    10. D. V. Millionshchikov, “Cohomology of solvable lie algebras and solvmanifolds”, Math. Notes, 77:1 (2005), 61–71  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    11. St. Petersburg Math. J., 18:5 (2007), 809—835  mathnet  crossref  mathscinet  zmath  elib
    12. M. Farber, D. Schütz, “Novikov–Betti numbers and the fundamental group”, Russian Math. Surveys, 61:6 (2006), 1173–1175  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. E. I. Yakovlev, “Bundles and Geometric Structures Associated With Gyroscopic Systems”, Journal of Mathematical Sciences, 153:6 (2008), 828–855  mathnet  crossref  mathscinet  zmath  elib
    14. M. Farber, D. Schütz, “Closed 1-forms in topology and dynamics”, Russian Math. Surveys, 63:6 (2008), 1079–1139  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. M. Farber, R. Geoghegan, D. Schütz, “Closed 1-forms in topology and geometric group theory”, Russian Math. Surveys, 65:1 (2010), 143–172  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. St. Petersburg Math. J., 26:3 (2015), 441–461  mathnet  crossref  mathscinet  isi  elib
  • Number of views:
    This page:14
    Full text:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019