RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk SSSR, 1983, Volume 268, Number 2, Pages 277–280 (Mi dan45856)  

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

New algebraic constructions of integrable Euler equations

O. I. Bogoyavlenskii

V. A. Steklov Mathematical Institute, USSR Academy of Sciences, Moscow

Full text: PDF file (606 kB)

Bibliographic databases:
UDC: 517.925
Presented: В. С. Владимиров
Received: 25.05.1982

Citation: O. I. Bogoyavlenskii, “New algebraic constructions of integrable Euler equations”, Dokl. Akad. Nauk SSSR, 268:2 (1983), 277–280

Citation in format AMSBIB
\Bibitem{Bog83}
\by O.~I.~Bogoyavlenskii
\paper New algebraic constructions of integrable Euler equations
\jour Dokl. Akad. Nauk SSSR
\yr 1983
\vol 268
\issue 2
\pages 277--280
\mathnet{http://mi.mathnet.ru/dan45856}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0688239}
\zmath{https://zbmath.org/?q=an:0545.58019}


Linking options:
  • http://mi.mathnet.ru/eng/dan45856
  • http://mi.mathnet.ru/eng/dan/v268/i2/p277

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  • Number of views:
    This page:34
    Full text:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020