RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk, 1994, Volume 338, Number 5, Pages 585–588 (Mi dan4655)  

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

On the boundary behavior of the components of a polyanalytic function

E. P. Dolzhenko

Lomonosov Moscow State University

Full text: PDF file (345 kB)

English version:
Doklady Mathematics, 1995, 50:2, 295–299

Bibliographic databases:
UDC: 517.5
Presented: А. Г. Витушкин
Received: 12.10.1993

Citation: E. P. Dolzhenko, “On the boundary behavior of the components of a polyanalytic function”, Dokl. Akad. Nauk, 338:5 (1994), 585–588; Dokl. Math., 50:2 (1995), 295–299

Citation in format AMSBIB
\Bibitem{Dol94}
\by E.~P.~Dolzhenko
\paper On the boundary behavior of the components of a polyanalytic
function
\jour Dokl. Akad. Nauk
\yr 1994
\vol 338
\issue 5
\pages 585--588
\mathnet{http://mi.mathnet.ru/dan4655}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1310701}
\zmath{https://zbmath.org/?q=an:0868.30044}
\transl
\jour Dokl. Math.
\yr 1995
\vol 50
\issue 2
\pages 295--299


Linking options:
  • http://mi.mathnet.ru/eng/dan4655
  • http://mi.mathnet.ru/eng/dan/v338/i5/p585

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. O. Besov, “The boundary behavior of components of polyharmonic functions”, Math. Notes, 64:4 (1998), 450–460  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. K. Ramazanov, “Representation of the space of polyanalytic functions as the direct sum of orthogonal subspaces. Application to rational approximations”, Math. Notes, 66:5 (1999), 613–627  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. K. O. Besov, “On the Nikol'skii Classes of Polyharmonic Functions”, Proc. Steklov Inst. Math., 227 (1999), 37–49  mathnet  mathscinet  zmath
    4. A.-R. K. Ramazanov, “On the Structure of Spaces of Polyanalytic Functions”, Math. Notes, 72:5 (2002), 692–704  mathnet  crossref  crossref  mathscinet  zmath  isi
  • Number of views:
    This page:12
    Full text:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021