RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk, 2018, Volume 481, Number 3, Pages 264–269 (Mi dan47506)  

Finite-dimensional approximations of the Steklov–Poincaré operator in periodic elastic waveguides

S. A. Nazarov

St. Petersburg State University

Abstract: For anisotropic elastic waveguides with cylindrical or periodic outlets to infinity, artificial integro-differential conditions are developed at the end face of a truncated waveguide, which simulate the Steklov–Poincaré operator for scalar problems. Asymptotically sharp error estimates are derived in the definition of both the elastic fields themselves in the waveguide and the corresponding scattering coefficients.

Funding Agency Grant Number
Russian Science Foundation 171101003


DOI: https://doi.org/10.31857/S086956520001375-5


English version:
DOI: https://doi.org/10.1134/S1028335818070108

Bibliographic databases:


Linking options:
  • http://mi.mathnet.ru/eng/dan47506

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019