RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk, 1994, Volume 336, Number 1, Pages 7–10 (Mi dan4813)  

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Limit ordinals in the Thurston–Jorgensen theorem on the volumes of three-dimensional hyperbolic manifolds

A. Yu. Vesnin, A. D. Mednykh

Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Full text: PDF file (322 kB)

English version:
Doklady Mathematics, 1994, 49:3, 435–439

Bibliographic databases:
UDC: 517.54
Presented: Ю. Г. Решетняк
Received: 03.06.1993

Citation: A. Yu. Vesnin, A. D. Mednykh, “Limit ordinals in the Thurston–Jorgensen theorem on the volumes of three-dimensional hyperbolic manifolds”, Dokl. Akad. Nauk, 336:1 (1994), 7–10; Dokl. Math., 49:3 (1994), 435–439

Citation in format AMSBIB
\Bibitem{VesMed94}
\by A.~Yu.~Vesnin, A.~D.~Mednykh
\paper Limit ordinals in the Thurston--Jorgensen theorem on the volumes of three-dimensional hyperbolic manifolds
\jour Dokl. Akad. Nauk
\yr 1994
\vol 336
\issue 1
\pages 7--10
\mathnet{http://mi.mathnet.ru/dan4813}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1283451}
\zmath{https://zbmath.org/?q=an:0838.57013}
\transl
\jour Dokl. Math.
\yr 1994
\vol 49
\issue 3
\pages 435--439


Linking options:
  • http://mi.mathnet.ru/eng/dan4813
  • http://mi.mathnet.ru/eng/dan/v336/i1/p7

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Yu. Vesnin, A. V. Masley, “On Jørgensen numbers and their analogs for groups of figure-eight orbifolds”, Siberian Math. J., 55:5 (2014), 807–816  mathnet  crossref  mathscinet  isi
  • Number of views:
    This page:10
    Full text:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020