RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk, 1993, Volume 329, Number 4, Pages 426–428 (Mi dan5229)  

This article is cited in 8 scientific papers (total in 8 papers)

THEORY OF ELASTICITY

The Cauchy problem for non-linearly deformed systems as a problem of the continuation of the solution with respect to the parameter

V. I. Shalashilin, E. B. Kuznetsov

Moscow Aviation Institute

Full text: PDF file (222 kB)

English version:
Doklady Mathematics, 1993, 38:4, 171–172

Bibliographic databases:
UDC: 539.1:517.91
Presented: И. И. Ворович
Received: 14.10.1992

Citation: V. I. Shalashilin, E. B. Kuznetsov, “The Cauchy problem for non-linearly deformed systems as a problem of the continuation of the solution with respect to the parameter”, Dokl. Akad. Nauk, 329:4 (1993), 426–428; Dokl. Math., 38:4 (1993), 171–172

Citation in format AMSBIB
\Bibitem{ShaKuz93}
\by V.~I.~Shalashilin, E.~B.~Kuznetsov
\paper The Cauchy problem for non-linearly deformed systems as a problem
of the continuation of the solution with respect to the parameter
\jour Dokl. Akad. Nauk
\yr 1993
\vol 329
\issue 4
\pages 426--428
\mathnet{http://mi.mathnet.ru/dan5229}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1238835}
\zmath{https://zbmath.org/?q=an:0824.70002}
\transl
\jour Dokl. Math.
\yr 1993
\vol 38
\issue 4
\pages 171--172


Linking options:
  • http://mi.mathnet.ru/eng/dan5229
  • http://mi.mathnet.ru/eng/dan/v329/i4/p426

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. B. Kuznetsov, V. I. Shalashilin, “The Cauchy problem as a problem of the continuation of a solution with respect to a parameter”, Comput. Math. Math. Phys., 33:12 (1993), 1569–1579  mathnet  mathscinet  zmath  isi
    2. E. B. Kuznetsov, V. I. Shalashilin, “A parametric approximation”, Comput. Math. Math. Phys., 34:12 (1994), 1511–1520  mathnet  mathscinet  zmath  isi
    3. E. B. Kuznetsov, V. I. Shalashilin, “Solution of differential-algebraic equations with the choice of the best argument”, Comput. Math. Math. Phys., 37:6 (1997), 691–702  mathnet  mathscinet  zmath
    4. E. B. Kuznetsov, V. I. Shalashilin, “Solution of singular equations transformed to the best argument”, Russian Math. (Iz. VUZ), 42:11 (1998), 53–60  mathnet  mathscinet  zmath
    5. E. B. Kuznetsov, “Transformation of equations with retarded argument to equations with the best argument”, Math. Notes, 63:1 (1998), 55–60  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. A. N. Danilin, N. N. Zuev, E. B. Kuznetsov, V. I. Shalashilin, “Some numerical efficiency estimates for the transformation of the Cauchy problem for differential equations to the best argument”, Comput. Math. Math. Phys., 39:7 (1999), 1092–1099  mathnet  mathscinet  zmath
    7. D. B. Volkov-Bogorodskii, A. N. Danilin, E. B. Kuznetsov, V. I. Shalashilin, “Implicit methods for integration of initial value problems for parameterized systems of second-order ordinary differential equations”, Comput. Math. Math. Phys., 43:11 (2003), 1620–1631  mathnet  mathscinet  zmath
    8. A. N. Danilin, E. B. Kuznetsov, V. I. Shalashilin, “On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems”, Russian Math. (Iz. VUZ), 49:8 (2005), 12–24  mathnet  mathscinet
  • Number of views:
    This page:11
    Full text:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020