RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk SSSR, 1987, Volume 295, Number 2, Pages 345–349 (Mi dan8049)  

This article is cited in 8 scientific papers (total in 8 papers)

MATHEMATICAL PHYSICS

Evolution of the Whitham zone in the Korteweg–de Vries theory

V. V. Avilov, I. M. Krichever, S. P. Novikov

Landau Institute for Theoretical Physics, USSR Academy of Sciences, Chernogolovka, Moscow Region

Full text: PDF file (569 kB)

Bibliographic databases:
UDC: 517
Received: 26.03.1987

Citation: V. V. Avilov, I. M. Krichever, S. P. Novikov, “Evolution of the Whitham zone in the Korteweg–de Vries theory”, Dokl. Akad. Nauk SSSR, 295:2 (1987), 345–349

Citation in format AMSBIB
\Bibitem{AviKriNov87}
\by V.~V.~Avilov, I.~M.~Krichever, S.~P.~Novikov
\paper Evolution of the Whitham zone in the Korteweg--de Vries theory
\jour Dokl. Akad. Nauk SSSR
\yr 1987
\vol 295
\issue 2
\pages 345--349
\mathnet{http://mi.mathnet.ru/dan8049}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=902689}
\zmath{https://zbmath.org/?q=an:0655.65132}


Linking options:
  • http://mi.mathnet.ru/eng/dan8049
  • http://mi.mathnet.ru/eng/dan/v295/i2/p345

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. V. Potëmin, “Algebro-geometric construction of self-similar solutions of the Whitham equations”, Russian Math. Surveys, 43:5 (1988), 252–253  mathnet  crossref  mathscinet  adsnasa  isi
    2. B. A. Dubrovin, S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russian Math. Surveys, 44:6 (1989), 35–124  mathnet  crossref  mathscinet  zmath  adsnasa
    3. R. F. Bikbaev, “Large-time asymptotics of the solution of the nonlinear Schrödinger equation with boundary conditions of step type”, Theoret. and Math. Phys., 81:1 (1989), 1011–1017  mathnet  crossref  mathscinet  zmath  isi
    4. S. P. Tsarev, “The geometry of harniltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR-Izv., 37:2 (1991), 397–419  mathnet  crossref  mathscinet  zmath  adsnasa
    5. P. I. Naumkin, I. A. Shishmarev, “The step-decay problem for the Korteweg-de Vries-Burgers equation”, Funct. Anal. Appl., 25:1 (1991), 16–25  mathnet  crossref  mathscinet  zmath  isi
    6. T. Grava, “Existence of a global solution of the Whitham equations”, Theoret. and Math. Phys., 122:1 (2000), 46–57  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. O. M. Kiselev, “Asymptotics of solutions of higher-dimensional integrable equations and their perturbations”, Journal of Mathematical Sciences, 138:6 (2006), 6067–6230  mathnet  crossref  mathscinet  zmath  elib
    8. A. Ya. Maltsev, “The Lorentz-Invariant Deformation of the Whitham System for the Nonlinear Klein–Gordon Equation”, Funct. Anal. Appl., 42:2 (2008), 103–115  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  • Number of views:
    This page:69
    Full text:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020