RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk SSSR, 1985, Volume 285, Number 1, Pages 31–36 (Mi dan8904)  

This article is cited in 9 scientific papers (total in 9 papers)

MATHEMATICS

Two-dimensional periodic difference operators and algebraic geometry

I. M. Krichever

Krzhizhanovsky Power Engineering Institute, Moscow

Full text: PDF file (742 kB)

Bibliographic databases:
UDC: 513.835
Presented: С. П. Новиков
Received: 05.10.1984

Citation: I. M. Krichever, “Two-dimensional periodic difference operators and algebraic geometry”, Dokl. Akad. Nauk SSSR, 285:1 (1985), 31–36

Citation in format AMSBIB
\Bibitem{Kri85}
\by I.~M.~Krichever
\paper Two-dimensional periodic difference operators and algebraic
geometry
\jour Dokl. Akad. Nauk SSSR
\yr 1985
\vol 285
\issue 1
\pages 31--36
\mathnet{http://mi.mathnet.ru/dan8904}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=812140}
\zmath{https://zbmath.org/?q=an:0603.39004}


Linking options:
  • http://mi.mathnet.ru/eng/dan8904
  • http://mi.mathnet.ru/eng/dan/v285/i1/p31

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Zabrodin, “A survey of Hirota's difference equations”, Theoret. and Math. Phys., 113:2 (1997), 1347–1392  mathnet  crossref  crossref  mathscinet  isi
    2. S. P. Novikov, I. A. Dynnikov, “Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1057–1116  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. A. A. Oblomkov, “Difference Operators on Two-Dimensional Regular Lattices”, Theoret. and Math. Phys., 127:1 (2001), 435–445  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. A. A. Oblomkov, “Isoenergy Spectral Problem for Multidimensional Difference Operators”, Funct. Anal. Appl., 36:2 (2002), 120–133  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. A. A. Oblomkov, “Spectral properties of two classes of periodic difference operators”, Sb. Math., 193:4 (2002), 559–584  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. B. O. Vasilevskiǐ, “The Green's function of a five-point discretization of a two-dimensional finite-gap Schrödinger operator: The case of four singular points on the spectral curve”, Siberian Math. J., 54:6 (2013), 994–1004  mathnet  crossref  mathscinet  isi
    7. B. O. Vasilevskii, “The Green Function of the Discrete Finite-Gap One-Energy Two-Dimensional Schrödinger Operator on the Quad Graph”, Math. Notes, 98:1 (2015), 38–52  mathnet  crossref  crossref  mathscinet  isi  elib
    8. B. O. Vasilevskii, “A Sufficient Nonsingularity Condition for a Discrete Finite-Gap One-Energy Two-Dimensional Schrödinger Operator on the Quad-Graph”, Funct. Anal. Appl., 49:3 (2015), 210–213  mathnet  crossref  crossref  isi  elib
    9. G. S. Mauleshova, “The dressing chain and one-point commuting difference operators of rank 1”, Siberian Math. J., 59:5 (2018), 901–908  mathnet  crossref  crossref  isi
  • Number of views:
    This page:28
    Full text:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020