|
This article is cited in 8 scientific papers (total in 8 papers)
MATHEMATICS
Hamiltonian property of the Krichever-Novikov equation
V. V. Sokolov Department for Physics and Mathematics of Bashkir Branch of the USSR Academy of Sciences, Ufa
Full text:
PDF file (379 kB)
Bibliographic databases:
UDC:
517.9 Presented: С. П. Новиков Received: 10.08.1983
Citation:
V. V. Sokolov, “Hamiltonian property of the Krichever-Novikov equation”, Dokl. Akad. Nauk SSSR, 277:1 (1984), 48–50
Citation in format AMSBIB
\Bibitem{Sok84}
\by V.~V.~Sokolov
\paper Hamiltonian property of the Krichever-Novikov equation
\jour Dokl. Akad. Nauk SSSR
\yr 1984
\vol 277
\issue 1
\pages 48--50
\mathnet{http://mi.mathnet.ru/dan9572}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=757069}
Linking options:
http://mi.mathnet.ru/eng/dan9572 http://mi.mathnet.ru/eng/dan/v277/i1/p48
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
F. Kh. Mukminov, V. V. Sokolov, “Integrable evolution equations with constraints”, Math. USSR-Sb., 61:2 (1988), 389–410
-
O. I. Mokhov, “Commuting differential operators of rank 3, and nonlinear differential equations”, Math. USSR-Izv., 35:3 (1990), 629–655
-
Funct. Anal. Appl., 24:3 (1990), 247–249
-
O. I. Mokhov, E. V. Ferapontov, “Non-local Hamiltonian operators of hydrodynamic type related to metrics of constant curvature”, Russian Math. Surveys, 45:3 (1990), 218–219
-
E. V. Ferapontov, “Differential geometry of nonlocal Hamiltonian operators of hydrodynamic type”, Funct. Anal. Appl., 25:3 (1991), 195–204
-
O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622
-
D. P. Novikov, “Algebraic-geometric solutions of the Krichever–Novikov equation”, Theoret. and Math. Phys., 121:3 (1999), 1567–1573
-
I. T. Habibullin, A. R. Khakimova, “A direct algorithm for constructing recursion operators and Lax pairs for integrable models”, Theoret. and Math. Phys., 196:2 (2018), 1200–1216
|
Number of views: |
This page: | 48 | Full text: | 31 |
|