RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dokl. Akad. Nauk SSSR, 1984, Volume 275, Number 6, Pages 1299–1302 (Mi dan9687)  

This article is cited in 5 scientific papers (total in 5 papers)

MATHEMATICS

The variation of a mapping function in the deformation of the domain

V. I. Vlasov

Research Institute Introscopy, Moscow

Full text: PDF file (448 kB)

Bibliographic databases:
UDC: 517.544.2
Presented: А. А. Дородницын
Received: 13.06.1983

Citation: V. I. Vlasov, “The variation of a mapping function in the deformation of the domain”, Dokl. Akad. Nauk SSSR, 275:6 (1984), 1299–1302

Citation in format AMSBIB
\Bibitem{Vla84}
\by V.~I.~Vlasov
\paper The variation of a mapping function in the deformation of the
domain
\jour Dokl. Akad. Nauk SSSR
\yr 1984
\vol 275
\issue 6
\pages 1299--1302
\mathnet{http://mi.mathnet.ru/dan9687}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=746373}
\zmath{https://zbmath.org/?q=an:0597.30010}


Linking options:
  • http://mi.mathnet.ru/eng/dan9687
  • http://mi.mathnet.ru/eng/dan/v275/i6/p1299

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Vlasov, D. B. Volkov, “The multipole method for Poisson's equation in regions with rounded corners”, Comput. Math. Math. Phys., 35:6 (1995), 687–707  mathnet  mathscinet  zmath  isi
    2. V. I. Vlasov, A. B. Pal'tsev, “The asymptotic of the solution to the Dirichlet problem for Poisson's equation in domains with a narrow slit”, Comput. Math. Math. Phys., 43:12 (2003), 1718–1737  mathnet  mathscinet  zmath
    3. S. I. Bezrodnykh, V. I. Vlasov, “A boundary value problem for modeling physical fields in a semiconductor”, Comput. Math. Math. Phys., 44:12 (2004), 2112–2142  mathnet  mathscinet  zmath
    4. S. I. Bezrodnykh, V. I. Vlasov, “Singular Riemann–Hilbert problem in complex-shaped domains”, Comput. Math. Math. Phys., 54:12 (2014), 1826–1875  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    5. S. I. Bezrodnykh, “The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications”, Russian Math. Surveys, 73:6 (2018), 941–1031  mathnet  crossref  crossref  adsnasa  isi  elib
  • Number of views:
    This page:50
    Full text:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020