|
This article is cited in 7 scientific papers (total in 7 papers)
Partial Differential Equations
A wave equation with a bounded control on two ends for an arbitrary time interval
V. A. Il'inab a Lomonosov Moscow State University
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full text:
PDF file (2780 kB)
English version:
Differential Equations, 1999, 35:11, 1535–1552
Bibliographic databases:
UDC:
517.984 Received: 27.08.1999
Citation:
V. A. Il'in, “A wave equation with a bounded control on two ends for an arbitrary time interval”, Differ. Uravn., 35:11 (1999), 1517–1534; Differ. Equ., 35:11 (1999), 1535–1552
Citation in format AMSBIB
\Bibitem{Ili99}
\by V.~A.~Il'in
\paper A wave equation with a bounded control on two ends for an arbitrary time interval
\jour Differ. Uravn.
\yr 1999
\vol 35
\issue 11
\pages 1517--1534
\mathnet{http://mi.mathnet.ru/de10038}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1762530}
\transl
\jour Differ. Equ.
\yr 1999
\vol 35
\issue 11
\pages 1535--1552
Linking options:
http://mi.mathnet.ru/eng/de10038 http://mi.mathnet.ru/eng/de/v35/i11/p1517
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
S. V. Leksina, “Zadacha granichnogo upravleniya dlya sistemy volnovykh uravnenii”, Trudy chetvertoi Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem (29–31 maya 2007 g.). Chast 3, Differentsialnye uravneniya i kraevye zadachi, Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2007, 123–132
-
R. K. Romanovskii, O. G. Zhukova, “Granichnoe upravlenie protsessom teploperenosa v dvumernom materiale. Giperbolicheskaya model”, Sib. zhurn. industr. matem., 11:3 (2008), 119–125
-
A. A. Andreev, S. V. Leksina, “Zadacha granichnogo upravleniya dlya sistemy volnovykh uravnenii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(16) (2008), 5–10
-
S. V. Leksina, “Zadacha granichnogo upravleniya v usloviyakh vtoroi kraevoi zadachi dlya matrichnogo volnovogo uravneniya”, Vestn. SamGU. Estestvennonauchn. ser., 2009, no. 4(70), 20–29
-
S. V. Leksina, G. A. Shibelbain, “Zadacha ob uspokoenii sistemy”, Trudy sedmoi Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem (3–6 iyunya 2010 g.). Chast 3, Differentsialnye uravneniya i kraevye zadachi, Matem. modelirovanie i kraev. zadachi, Samarskii gosudarstvennyi tekhnicheskii universitet, Samara, 2010, 152–157
-
E. A. Kozlova, “Zadacha upravleniya dlya giperbolicheskogo uravneniya v sluchae kharakteristik s uglovymi koeffitsientami odnogo znaka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(26) (2012), 243–247
-
A. E. Alekseenko, A. S. Kholodov, Ya. A. Kholodov, “Boundary control problems for quasilinear systems of hyperbolic equations”, Comput. Math. Math. Phys., 56:6 (2016), 916–931
|
Number of views: |
This page: | 60 | Full text: | 28 |
|