Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1970, Volume 6, Number 6, Pages 1086–1098 (Mi de1012)  

The equivalence of the $T_s(\alpha,\lambda_k)$ methods, $s>0$, the Cesàro and Riesz methods of arbitrary positive order, and Abel's method, for Fourier series in fundamental function systems of Laplace's operator

G. I. Furletov

Lomonosov Moscow State University

Full text: PDF file (1326 kB)

Bibliographic databases:
UDC: 517.95:517.974.52
Received: 19.06.1969

Citation: G. I. Furletov, “The equivalence of the $T_s(\alpha,\lambda_k)$ methods, $s>0$, the Cesàro and Riesz methods of arbitrary positive order, and Abel's method, for Fourier series in fundamental function systems of Laplace's operator”, Differ. Uravn., 6:6 (1970), 1086–1098

Citation in format AMSBIB
\Bibitem{Fur70}
\by G.~I.~Furletov
\paper The equivalence of the $T_s(\alpha,\lambda_k)$ methods, $s>0$, the Ces\`aro and Riesz methods of arbitrary positive order, and Abel's method, for Fourier series in fundamental function systems of Laplace's operator
\jour Differ. Uravn.
\yr 1970
\vol 6
\issue 6
\pages 1086--1098
\mathnet{http://mi.mathnet.ru/de1012}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=273291}
\zmath{https://zbmath.org/?q=an:0202.06403}


Linking options:
  • http://mi.mathnet.ru/eng/de1012
  • http://mi.mathnet.ru/eng/de/v6/i6/p1086

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:51
    Full text:28

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022