|
This article is cited in 4 scientific papers (total in 4 papers)
Short Communications
Investigation of a spectral problem for the Helmholtz operator on the plane
E. M. Karchevskii, S. I. Solov'ev Kazan State University
Full text:
PDF file (558 kB)
English version:
Differential Equations, 2000, 36:4, 631–634
Bibliographic databases:
UDC:
517.956.227 Received: 23.03.1999
Citation:
E. M. Karchevskii, S. I. Solov'ev, “Investigation of a spectral problem for the Helmholtz operator on the plane”, Differ. Uravn., 36:4 (2000), 563–565; Differ. Equ., 36:4 (2000), 631–634
Citation in format AMSBIB
\Bibitem{KarSol00}
\by E.~M.~Karchevskii, S.~I.~Solov'ev
\paper Investigation of a spectral problem for the Helmholtz operator on the plane
\jour Differ. Uravn.
\yr 2000
\vol 36
\issue 4
\pages 563--565
\mathnet{http://mi.mathnet.ru/de10145}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1814502}
\transl
\jour Differ. Equ.
\yr 2000
\vol 36
\issue 4
\pages 631--634
\crossref{https://doi.org/10.1007/BF02754261}
Linking options:
http://mi.mathnet.ru/eng/de10145 http://mi.mathnet.ru/eng/de/v36/i4/p563
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
E. M. Karchevskii, S. I. Solov'ev, “Existence of eigenvalues of a spectral problem in the theory of dielectric waveguides”, Russian Math. (Iz. VUZ), 47:3 (2003), 75–77
-
E. M. Karchevskii, “Spektralnye zadachi teorii dielektricheskikh volnovodov”, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 150, no. 4, Izd-vo Kazanskogo un-ta, Kazan, 2008, 113–126
-
V. S. Zheltukhin, S. I. Solovev, P. S. Solovev, V. Yu. Chebakova, “Vychislenie minimalnogo sobstvennogo znacheniya nelineinoi zadachi Shturma–Liuvillya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 3, Izd-vo Kazanskogo un-ta, Kazan, 2013, 91–104
-
V. S. Zheltukhin, S. I. Solovev, P. S. Solovev, “Approksimatsiya naimenshego sobstvennogo znacheniya nelineinoi zadachi Shturma–Liuvillya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 157, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2015, 40–54
|
Number of views: |
This page: | 74 | Full text: | 39 |
|