RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 2001, Volume 37, Number 3, Pages 402–409 (Mi de10348)  

This article is cited in 3 scientific papers (total in 3 papers)

Partial Differential Equations

A Formula for the First Regularized Trace of a Perturbed Laplace–Beltrami Operator

V. A. Sadovnichiia, Z. Yu. Fazullinb

a Lomonosov Moscow State University
b Bashkir State University, Ufa

Full text: PDF file (863 kB)

English version:
Differential Equations, 2001, 37:3, 430–438

Bibliographic databases:

UDC: 517.956.227
Received: 07.04.1999

Citation: V. A. Sadovnichii, Z. Yu. Fazullin, “A Formula for the First Regularized Trace of a Perturbed Laplace–Beltrami Operator”, Differ. Uravn., 37:3 (2001), 402–409; Differ. Equ., 37:3 (2001), 430–438

Citation in format AMSBIB
\Bibitem{SadFaz01}
\by V.~A.~Sadovnichii, Z.~Yu.~Fazullin
\paper A Formula for the First Regularized Trace of a Perturbed Laplace--Beltrami Operator
\jour Differ. Uravn.
\yr 2001
\vol 37
\issue 3
\pages 402--409
\mathnet{http://mi.mathnet.ru/de10348}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1846537}
\transl
\jour Differ. Equ.
\yr 2001
\vol 37
\issue 3
\pages 430--438
\crossref{https://doi.org/10.1023/A:1019206902268}


Linking options:
  • http://mi.mathnet.ru/eng/de10348
  • http://mi.mathnet.ru/eng/de/v37/i3/p402

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Sadovnichii, Z. Yu. Fazullin, “Asymptotics of the eigenvalues and the formula for the trace of perturbations of the Laplace operator on the sphere $\mathbb S^2$”, Math. Notes, 77:3 (2005), 400–413  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Kh. Kh. Murtazin, Z. Yu. Fazullin, “Non-nuclear perturbations of discrete operators and trace formulae”, Sb. Math., 196:12 (2005), 1841–1874  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. A. I. Atnagulov, V. A. Sadovnichy, Z. Yu. Fazullin, “Properties of the resolvent of the Laplace operator on a two-dimensional sphere and a trace formula”, Ufa Math. J., 8:3 (2016), 22–40  mathnet  crossref  mathscinet  isi  elib
  • Number of views:
    This page:84
    Full text:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019