RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 2001, Volume 37, Number 7, Pages 969–975 (Mi de10418)  

Numerical methods

Investigation of the Convergence of a Finite-Difference Method for the Drop Surface Equation with the Neumann Boundary Condition

M. P. Sapagovas

Institute of Mathematics and Informatics, Lithuanian Academy of Sciences

Full text: PDF file (1003 kB)

English version:
Differential Equations, 2001, 37:7, 1019–1025

Bibliographic databases:

UDC: 519.622.2
Received: 01.03.2001

Citation: M. P. Sapagovas, “Investigation of the Convergence of a Finite-Difference Method for the Drop Surface Equation with the Neumann Boundary Condition”, Differ. Uravn., 37:7 (2001), 969–975; Differ. Equ., 37:7 (2001), 1019–1025

Citation in format AMSBIB
\Bibitem{Sap01}
\by M.~P.~Sapagovas
\paper Investigation of the Convergence of a Finite-Difference Method for the Drop Surface Equation with the Neumann Boundary Condition
\jour Differ. Uravn.
\yr 2001
\vol 37
\issue 7
\pages 969--975
\mathnet{http://mi.mathnet.ru/de10418}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1887274}
\transl
\jour Differ. Equ.
\yr 2001
\vol 37
\issue 7
\pages 1019--1025
\crossref{https://doi.org/10.1023/A:1011922108003}


Linking options:
  • http://mi.mathnet.ru/eng/de10418
  • http://mi.mathnet.ru/eng/de/v37/i7/p969

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:26
    Full text:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019