RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 2002, Volume 38, Number 11, Pages 1506–1510 (Mi de10732)  

This article is cited in 2 scientific papers (total in 2 papers)

Ordinary Differential Equations

Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$

M. S. Nikol'skii

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Full text: PDF file (789 kB)

English version:
Differential Equations, 2002, 38:11, 1599–1604

Bibliographic databases:

UDC: 517.977
Received: 10.01.2002

Citation: M. S. Nikol'skii, “Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$”, Differ. Uravn., 38:11 (2002), 1506–1510; Differ. Equ., 38:11 (2002), 1599–1604

Citation in format AMSBIB
\Bibitem{Nik02}
\by M.~S.~Nikol'skii
\paper Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$
\jour Differ. Uravn.
\yr 2002
\vol 38
\issue 11
\pages 1506--1510
\mathnet{http://mi.mathnet.ru/de10732}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2046418}
\transl
\jour Differ. Equ.
\yr 2002
\vol 38
\issue 11
\pages 1599--1604
\crossref{https://doi.org/10.1023/A:1023689022175}


Linking options:
  • http://mi.mathnet.ru/eng/de10732
  • http://mi.mathnet.ru/eng/de/v38/i11/p1506

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Kryazhimskiy, A. M. Tarasyev, “Optimal control for proportional economic growth”, Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 101–119  mathnet  crossref  mathscinet  isi  elib
    2. A. L. Bagno, A. M. Tarasev, “Svoistva funktsii tseny v zadachakh optimalnogo upravleniya s beskonechnym gorizontom”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 26:1 (2016), 3–14  mathnet  crossref  mathscinet  elib
  • Number of views:
    This page:59
    Full text:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019