RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 2003, Volume 39, Number 4, Pages 472–481 (Mi de10819)  

This article is cited in 2 scientific papers (total in 2 papers)

Ordinary Differential Equations

Cubic Systems of Nonlinear Oscillations with Seven Limit Cycles

A. P. Sadovskii

Belarusian State University, Minsk

Full text: PDF file (1764 kB)

English version:
Differential Equations, 2003, 39:4, 505–516

Bibliographic databases:

UDC: 517.925.41
Received: 12.07.2001

Citation: A. P. Sadovskii, “Cubic Systems of Nonlinear Oscillations with Seven Limit Cycles”, Differ. Uravn., 39:4 (2003), 472–481; Differ. Equ., 39:4 (2003), 505–516

Citation in format AMSBIB
\Bibitem{Sad03}
\by A.~P.~Sadovskii
\paper Cubic Systems of Nonlinear Oscillations with Seven Limit Cycles
\jour Differ. Uravn.
\yr 2003
\vol 39
\issue 4
\pages 472--481
\mathnet{http://mi.mathnet.ru/de10819}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2132993}
\transl
\jour Differ. Equ.
\yr 2003
\vol 39
\issue 4
\pages 505--516
\crossref{https://doi.org/10.1023/A:1026010926840}


Linking options:
  • http://mi.mathnet.ru/eng/de10819
  • http://mi.mathnet.ru/eng/de/v39/i4/p472

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. L. Bondar, A. P. Sadovskii, “Variety of the center and limit cycles of a cubic system, which is reduced to lienard form”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 3, 71–90  mathnet  mathscinet  zmath
    2. M. T. Teryokhin, “The limit cycles of a second-order system of differential equations: the method of small forms”, Russian Math. (Iz. VUZ), 53:8 (2009), 60–68  mathnet  crossref  mathscinet  zmath  elib
  • Number of views:
    This page:59
    Full text:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020