RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Дифференц. уравнения:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Дифференц. уравнения, 2005, том 41, номер 5, страницы 661–669 (Mi de11280)  

Уравнения с частными производными

Разрешимость эллиптического уравнения с градиентной нелинейностью

Е. И. Галахов

Ростокский университет

Аннотация: Доказываются теоремы существования и отсутствия положительных решений квазилинейного эллиптического дифференциального уравнения, содержащего градиентный член. Методами стрельбы и вариационных тождеств получены достаточные условия существования убывающих классических положительных решений во всем пространстве. Для получения необходимых условий разрешимости использованы априорные оценки, полученные методом нелинейной емкости.
Библиогр. 10 назв.

Полный текст: PDF файл (1143 kB)

Англоязычная версия:
Differential Equations, 2005, 41:5, 693–702

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.957
Поступила в редакцию: 30.03.2004

Образец цитирования: Е. И. Галахов, “Разрешимость эллиптического уравнения с градиентной нелинейностью”, Дифференц. уравнения, 41:5 (2005), 661–669; Differ. Equ., 41:5 (2005), 693–702

Цитирование в формате AMSBIB
\RBibitem{Gal05}
\by Е.~И.~Галахов
\paper Разрешимость эллиптического уравнения с~градиентной нелинейностью
\jour Дифференц. уравнения
\yr 2005
\vol 41
\issue 5
\pages 661--669
\mathnet{http://mi.mathnet.ru/de11280}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2200678}
\transl
\jour Differ. Equ.
\yr 2005
\vol 41
\issue 5
\pages 693--702
\crossref{https://doi.org/10.1007/s10625-005-0204-4}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/de11280
  • http://mi.mathnet.ru/rus/de/v41/i5/p661

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:20
    Полный текст:7

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019