|
This article is cited in 10 scientific papers (total in 10 papers)
Numerical methods
A Higher-Order Richardson Method for a Quasilinear Singularly Perturbed Elliptic Reaction-Diffusion Equation
G. I. Shishkin, L. P. Shishkina Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full text:
PDF file (1163 kB)
English version:
Differential Equations, 2005, 41:7, 1030–1039
Bibliographic databases:
UDC:
519.633 Received: 01.03.2005
Citation:
G. I. Shishkin, L. P. Shishkina, “A Higher-Order Richardson Method for a Quasilinear Singularly Perturbed Elliptic Reaction-Diffusion Equation”, Differ. Uravn., 41:7 (2005), 980–989; Differ. Equ., 41:7 (2005), 1030–1039
Citation in format AMSBIB
\Bibitem{ShiShi05}
\by G.~I.~Shishkin, L.~P.~Shishkina
\paper A Higher-Order Richardson Method for a Quasilinear Singularly Perturbed Elliptic Reaction-Diffusion Equation
\jour Differ. Uravn.
\yr 2005
\vol 41
\issue 7
\pages 980--989
\mathnet{http://mi.mathnet.ru/de11321}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2201992}
\transl
\jour Differ. Equ.
\yr 2005
\vol 41
\issue 7
\pages 1030--1039
\crossref{https://doi.org/10.1007/s10625-005-0245-8}
Linking options:
http://mi.mathnet.ru/eng/de11321 http://mi.mathnet.ru/eng/de/v41/i7/p980
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
G. I. Shishkin, “Setochnaya approksimatsiya singulyarno vozmuschennogo kvazilineinogo parabolicheskogo uravneniya konvektsii-diffuzii na apriorno adaptiruyuschikhsya setkakh”, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 149, no. 4, Izd-vo Kazanskogo un-ta, Kazan, 2007, 146–172
-
G. I. Shishkin, “The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition”, Comput. Math. Math. Phys., 49:8 (2009), 1348–1368
-
G. I. Shishkin, L. P. Shishkina, “A Richardson scheme of an increased order of accuracy for a semilinear singularly perturbed elliptic convection-diffusion equation”, Comput. Math. Math. Phys., 50:3 (2010), 437–456
-
G. I. Shishkin, L. P. Shishkina, “A Richardson scheme of the decomposition method for solving singularly perturbed parabolic reaction-diffusion equation”, Comput. Math. Math. Phys., 50:12 (2010), 2003–2022
-
G. I. Shishkin, L. P. Shishkina, “Improved difference scheme of the solution decomposition method for a singularly perturbed reaction-diffusion equation”, Proc. Steklov Inst. Math. (Suppl.), 272, suppl. 1 (2011), S197–S214
-
G. I. Shishkin, L. P. Shishkina, “Improved approximations of the solution and derivatives to a singularly perturbed reaction-diffusion equation based on the solution decomposition method”, Comput. Math. Math. Phys., 51:6 (2011), 1020–1049
-
G. I. Shishkin, “A finite difference scheme of improved accuracy on a priori adapted grids for a singularly perturbed parabolic convection–diffusion equation”, Comput. Math. Math. Phys., 51:10 (2011), 1705–1728
-
G. I. Shishkin, L. P. Shishkina, “Difference scheme of highest accuracy order for a singularly perturbed reaction-diffusion equation based on the solution decomposition method”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 262–275
-
S. V. Tikhovskaya, “Issledovanie dvukhsetochnogo metoda povyshennoi tochnosti dlya ellipticheskogo uravneniya reaktsii–diffuzii s pogranichnymi sloyami”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 157, no. 1, Izd-vo Kazanskogo un-ta, Kazan, 2015, 60–74
-
G. I. Shishkin, L. P. Shishkina, “A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation”, Comput. Math. Math. Phys., 55:3 (2015), 386–409
|
Number of views: |
This page: | 116 | Full text: | 41 |
|