Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 2006, Volume 42, Number 9, Pages 1243–1247 (Mi de11561)  

This article is cited in 8 scientific papers (total in 8 papers)

Integral Equations and Integral-Differential

Existence and construction of generalized solutions of nonlinear Volterra integral equations of the first kind

N. A. Sidorova, D. N. Sidorovb

a Irkutsk State University
b Energy Systems Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk

Full text: PDF file (573 kB)

English version:
Differential Equations, 2006, 42:9, 1312–1316

Bibliographic databases:

UDC: 517.968
Received: 17.02.2005

Citation: N. A. Sidorov, D. N. Sidorov, “Existence and construction of generalized solutions of nonlinear Volterra integral equations of the first kind”, Differ. Uravn., 42:9 (2006), 1243–1247; Differ. Equ., 42:9 (2006), 1312–1316

Citation in format AMSBIB
\Bibitem{SidSid06}
\by N.~A.~Sidorov, D.~N.~Sidorov
\paper Existence and construction of generalized solutions of nonlinear Volterra integral equations of the first kind
\jour Differ. Uravn.
\yr 2006
\vol 42
\issue 9
\pages 1243--1247
\mathnet{http://mi.mathnet.ru/de11561}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2294312}
\transl
\jour Differ. Equ.
\yr 2006
\vol 42
\issue 9
\pages 1312--1316
\crossref{https://doi.org/10.1134/S0012266106090096}


Linking options:
  • http://mi.mathnet.ru/eng/de11561
  • http://mi.mathnet.ru/eng/de/v42/i9/p1243

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. A. Sidorov, D. N. Sidorov, “Generalized solutions to integral equations in the problem of identification of nonlinear dynamic models”, Autom. Remote Control, 70:4 (2009), 598–604  mathnet  crossref  mathscinet  zmath  isi
    2. D. N. Sidorov, “Ob odnom klasse nelineinykh uravnenii I roda s odnorodnymi integralnymi operatorami”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 4:1 (2011), 109–117  mathnet
    3. D. N. Sidorov, “O razreshimosti uravnenii Volterra I roda s kusochno-nepreryvnymi yadrami v klasse obobschennykh funktsii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 5:1 (2012), 80–95  mathnet
    4. D. N. Sidorov, “O semeistvakh reshenii integralnykh uravnenii Volterry pervogo roda s razryvnymi yadrami”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 12, 44–52  mathnet
    5. D. N. Sidorov, “Solvability of systems of integral Volterra equations of the first kind with piecewise continuous kernels”, Russian Math. (Iz. VUZ), 57:1 (2013), 54–63  mathnet  crossref
    6. N. A. Sidorov, “Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov–Maxwell system”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 6:4 (2013), 85–106  mathnet
    7. N. A. Sidorov, D. N. Sidorov, “On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels”, Math. Notes, 96:5 (2014), 811–826  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    8. N. A. Sidorov, “Classic solutions of boundary value problems for partial differential equations with operator of finite index in the main part of equation”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 27 (2019), 55–70  mathnet  crossref
  • Number of views:
    This page:75
    Full text:36

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021