RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1971, Volume 7, Number 4, Pages 670–710 (Mi de1255)  

This article is cited in 12 scientific papers (total in 12 papers)

Partial Differential Equations

Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. I. Self-adjoint extension of the Laplace operator with a point spectrum

V. A. Il'in, Sh. A. Alimov

Lomonosov Moscow State University

Full text: PDF file (3629 kB)

Bibliographic databases:
UDC: 517.518.45.517.95
Received: 28.12.1970

Citation: V. A. Il'in, Sh. A. Alimov, “Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. I. Self-adjoint extension of the Laplace operator with a point spectrum”, Differ. Uravn., 7:4 (1971), 670–710

Citation in format AMSBIB
\Bibitem{IliAli71}
\by V.~A.~Il'in, Sh.~A.~Alimov
\paper Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. I. Self-adjoint extension of the Laplace operator with a point spectrum
\jour Differ. Uravn.
\yr 1971
\vol 7
\issue 4
\pages 670--710
\mathnet{http://mi.mathnet.ru/de1255}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=284867}
\zmath{https://zbmath.org/?q=an:0224.35014}


Linking options:
  • http://mi.mathnet.ru/eng/de1255
  • http://mi.mathnet.ru/eng/de/v7/i4/p670

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Erratum Cycle of papers

    This publication is cited in the following articles:
    1. B. I. Golubov, “On the convergence of Riesz spherical means of multiple Fourier series and integrals of functions of bounded generalized variation”, Math. USSR-Sb., 18:4 (1972), 635–658  mathnet  crossref  mathscinet  zmath
    2. L. V. Zhizhiashvili, “Some problems in the theory of simple and multiple trigonometric and orthogonal series”, Russian Math. Surveys, 28:2 (1973), 65–127  mathnet  crossref  mathscinet  zmath
    3. Sh. A. Alimov, V. A. Il'in, E. M. Nikishin, “Convergence problems of multiple trigonometric series and spectral decompositions. I”, Russian Math. Surveys, 31:6 (1976), 29–86  mathnet  crossref  mathscinet  zmath
    4. V. V. Tikhomirov, “On the Riesz means of expansion in eigenfunctions and associated functions of a nonselfadjoint ordinary differntial operator”, Math. USSR-Sb., 31:1 (1977), 29–48  mathnet  crossref  mathscinet  zmath  isi
    5. Sh. A. Alimov, V. A. Il'in, E. M. Nikishin, “Problems of convergence of multiple trigonometric series and spectral decompositions. II”, Russian Math. Surveys, 32:1 (1977), 115–139  mathnet  crossref  mathscinet  zmath
    6. M. I. Dyachenko, “$u$-convergence of multiple Fourier series”, Izv. Math., 59:2 (1995), 353–366  mathnet  crossref  mathscinet  zmath  isi
    7. M. I. Dyachenko, “Uniform convergence of double Fourier series for classes of functions with anisotropic smoothness”, Math. Notes, 59:6 (1996), 680–686  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. M. I. Dyachenko, “Spherical partial sums of the double Fourier series of functions of bounded generalized variation”, Sb. Math., 188:1 (1997), 29–60  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. M. I. Dyachenko, “Two-dimensional Waterman classes and $u$-convergence of Fourier series”, Sb. Math., 190:7 (1999), 955–972  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. T. G. Ayele, M. L. Goldman, “Spaces of generalised smoothness in summability problems for $\Phi$-means of spectral decomposition”, Eurasian Math. J., 5:1 (2014), 61–81  mathnet
    11. A. A. Rakhimov, “On the uniform convergence of Fourier series on a closed domain”, Eurasian Math. J., 8:3 (2017), 60–69  mathnet
    12. E. Liflyand, “Babenko's work on spherical Lebesgue constants”, Eurasian Math. J., 9:4 (2018), 79–81  mathnet  crossref
  • Number of views:
    This page:150
    Full text:58

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020